IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i17p5504-d628565.html
   My bibliography  Save this article

Simulation of Hydrogen-Air-Diluents Mixture Combustion in an Acceleration Tube with FlameFoam Solver

Author

Listed:
  • Mantas Povilaitis

    (Laboratory of Nuclear Installation Safety, Lithuanian Energy Institute, Breslaujos Str. 3, LT-44403 Kaunas, Lithuania)

  • Justina Jaseliūnaitė

    (Laboratory of Nuclear Installation Safety, Lithuanian Energy Institute, Breslaujos Str. 3, LT-44403 Kaunas, Lithuania)

Abstract

During a severe accident in a nuclear power plant, hydrogen can be generated, leading to risks of possible deflagration and containment integrity failure. To manage severe accidents, great experimental, analytical, and benchmarking efforts are being made to understand combustible gas distribution, deflagration, and detonation processes. In one of the benchmarks—SARNET H2—flame acceleration due to obstacle-induced turbulence was investigated in the ENACCEF facility. The turbulent combustion problem is overly complex because it involves coupling between fluid dynamics, mass/heat transfer, and chemistry. There are still unknowns in understanding the mechanisms of turbulent flame propagation, therefore many methods in interpreting combustion and turbulent speed are present. Based on SARNET H2 benchmark results, a two-dimensional computational fluid dynamics simulation of turbulent hydrogen flame propagation in the ENACCEF facility was performed. Four combustible mixtures with different diluents concentrations were considered—13% H 2 and 0%/10%/20%/30% of diluents in air. The aim of this numerical simulation was to validate the custom-built turbulent combustion OpenFOAM solver based on the progress variable model—flameFoam. Furthermore, another objective was to perform parametric analysis in relation to turbulent speed correlations and turbulence models and interpret the k-ω SST model blending function F1 behavior during the combustion process. The obtained results show that in the simulated case all three turbulent speed correlations behave similarly and can be used to reproduce observable flame speed; also, the k-ε model provides more accurate results than the k-ω SST turbulence model. It is shown in the paper that the k-ω SST model misinterprets the sudden parameter gradients resulting from turbulent combustion.

Suggested Citation

  • Mantas Povilaitis & Justina Jaseliūnaitė, 2021. "Simulation of Hydrogen-Air-Diluents Mixture Combustion in an Acceleration Tube with FlameFoam Solver," Energies, MDPI, vol. 14(17), pages 1-13, September.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:17:p:5504-:d:628565
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/17/5504/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/17/5504/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Akhtar, Saad & Kurnia, Jundika C. & Shamim, Tariq, 2015. "A three-dimensional computational model of H2–air premixed combustion in non-circular micro-channels for a thermo-photovoltaic (TPV) application," Applied Energy, Elsevier, vol. 152(C), pages 47-57.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hyung-Seok Kang & Sang-Min Kim & Jongtae Kim, 2022. "Safety Issues of a Hydrogen Refueling Station and a Prediction for an Overpressure Reduction by a Barrier Using OpenFOAM Software for an SRI Explosion Test in an Open Space," Energies, MDPI, vol. 15(20), pages 1-21, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peng, Qingguo & Xie, Bo & Yang, Wenming & Tang, Shihao & Li, Zhenwei & Zhou, Peng & Luo, Ningkang, 2021. "Effects of porosity and multilayers of porous medium on the hydrogen-fueled combustion and micro-thermophotovoltaic," Renewable Energy, Elsevier, vol. 174(C), pages 391-402.
    2. Jiaqiang, E. & Zuo, Wei & Liu, Xueling & Peng, Qingguo & Deng, Yuanwang & Zhu, Hao, 2016. "Effects of inlet pressure on wall temperature and exergy efficiency of the micro-cylindrical combustor with a step," Applied Energy, Elsevier, vol. 175(C), pages 337-345.
    3. Zuo, Wei & E, Jiaqiang & Liu, Haili & Peng, Qingguo & Zhao, Xiaohuan & Zhang, Zhiqing, 2016. "Numerical investigations on an improved micro-cylindrical combustor with rectangular rib for enhancing heat transfer," Applied Energy, Elsevier, vol. 184(C), pages 77-87.
    4. Zuo, Wei & Li, Qingqing & He, Zhu & Li, Yawei, 2020. "Numerical investigations on thermal performance enhancement of hydrogen-fueled micro planar combustors with injectors for micro-thermophotovoltaic applications," Energy, Elsevier, vol. 194(C).
    5. Zuo, Wei & Zhang, Yuntian & Li, Qingqing & Li, Jing & He, Zhu, 2021. "Numerical investigations on hydrogen-fueled micro-cylindrical combustors with cavity for micro-thermophotovoltaic applications," Energy, Elsevier, vol. 223(C).
    6. Wu, H. & Kaviany, M. & Kwon, O.C., 2018. "Thermophotovoltaic power conversion using a superadiabatic radiant burner," Applied Energy, Elsevier, vol. 209(C), pages 392-399.
    7. Li, Yueh-Heng & Hong, Jing-Ru, 2018. "Performance assessment of catalytic combustion-driven thermophotovoltaic platinum tubular reactor," Applied Energy, Elsevier, vol. 211(C), pages 843-853.
    8. E, Jiaqiang & Luo, Bo & Han, Dandan & Chen, Jingwei & Liao, Gaoliang & Zhang, Feng & Ding, Jiangjun, 2022. "A comprehensive review on performance improvement of micro energy mechanical system: Heat transfer, micro combustion and energy conversion," Energy, Elsevier, vol. 239(PE).
    9. E, Jiaqiang & Meng, Tian & Chen, Jingwei & Wu, Weiwei & Zhao, Xiaohuan & Zhang, Bin & Peng, Qingguo, 2021. "Effect analysis on performance enhancement of a hydrogen/air non-premixed micro combustor with sudden expansion and contraction structure," Energy, Elsevier, vol. 230(C).
    10. Zejia Liu & Zigui Zhang & Peifeng Xie & Zibo Miao, 2022. "Design of Selective TPV Thermal Emitters Based on Bayesian Optimization Nesting Simulated Annealing," Energies, MDPI, vol. 16(1), pages 1-16, December.
    11. Zhuang Kang & Zhiwei Shi & Jiahao Ye & Xinghua Tian & Zhixin Huang & Hao Wang & Depeng Wei & Qingguo Peng & Yaojie Tu, 2023. "A Review of Micro Power System and Micro Combustion: Present Situation, Techniques and Prospects," Energies, MDPI, vol. 16(7), pages 1-28, April.
    12. Zuo, Wei & E, Jiaqiang & Hu, Wenyu & Jin, Yu & Han, Dandan, 2017. "Numerical investigations on combustion characteristics of H2/air premixed combustion in a micro elliptical tube combustor," Energy, Elsevier, vol. 126(C), pages 1-12.
    13. Kim, Tae Young & Kim, Hee Kyung & Ku, Jae Won & Kwon, Oh Chae, 2017. "A heat-recirculating combustor with multiple injectors for thermophotovoltaic power conversion," Applied Energy, Elsevier, vol. 193(C), pages 174-181.
    14. Peng, Qingguo & Shi, Zhiwei & Xie, Bo & Huang, Zhixin & Tang, Shihao & Li, Xianhua & Huang, Haisong & E, Jiaqiang, 2023. "Optimisation of a micro-thermophotovoltaic with porous media inserted burner for electrical power improvement," Renewable Energy, Elsevier, vol. 215(C).
    15. Alipoor, Alireza & Saidi, Mohammad Hassan, 2017. "Numerical study of hydrogen-air combustion characteristics in a novel micro-thermophotovoltaic power generator," Applied Energy, Elsevier, vol. 199(C), pages 382-399.
    16. Zuo, Wei & E, Jiaqiang & Peng, Qingguo & Zhao, Xiaohuan & Zhang, Zhiqing, 2017. "Numerical investigations on a comparison between counterflow and coflow double-channel micro combustors for micro-thermophotovoltaic system," Energy, Elsevier, vol. 122(C), pages 408-419.
    17. Akhtar, Saad & Khan, Mohammed N. & Kurnia, Jundika C. & Shamim, Tariq, 2017. "Investigation of energy conversion and flame stability in a curved micro-combustor for thermo-photovoltaic (TPV) applications," Applied Energy, Elsevier, vol. 192(C), pages 134-145.
    18. Zuo, Wei & Li, Jing & Zhang, Yuntian & Li, Qingqing & He, Zhu, 2020. "Effects of multi-factors on comprehensive performance of a hydrogen-fueled micro-cylindrical combustor by combining grey relational analysis and analysis of variance," Energy, Elsevier, vol. 199(C).
    19. He, Ziqiang & Yan, Yunfei & Zhao, Ting & Zhang, Zhien & Mikulčić, Hrvoje, 2022. "Parametric study of inserting internal spiral fins on the micro combustor performance for thermophotovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    20. Xie, Bo & Peng, Qingguo & Yang, Wenming & Li, Shaobo & E, Jiaqiang & Li, Zhenwei & Tao, Meng & Zhang, Ansi, 2022. "Effect of pins and exit-step on thermal performance and energy efficiency of hydrogen-fueled combustion for micro-thermophotovoltaic," Energy, Elsevier, vol. 239(PD).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:17:p:5504-:d:628565. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.