IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i17p5355-d623994.html
   My bibliography  Save this article

Numerical Analysis of Natural Convection Driven Flow of a Non-Newtonian Power-Law Fluid in a Trapezoidal Enclosure with a U-Shaped Constructal

Author

Listed:
  • Sardar Bilal

    (Department of Mathematics, Air University, P.A.F Complex E-9, Islamabad 44000, Pakistan)

  • Maryam Rehman

    (Department of Mathematics, Air University, P.A.F Complex E-9, Islamabad 44000, Pakistan)

  • Samad Noeiaghdam

    (Industrial Mathematics Laboratory, Baikal School of BRICS, Irkutsk National Research Technical University, 664074 Irkutsk, Russia
    Department of Applied Mathematics and Programming, South Ural State University, Lenin Prospect 76, 454080 Chelyabinsk, Russia)

  • Hijaz Ahmad

    (Section of Mathematics, International Telematic University Uninettuno, Corso Vittorio Emanuele II 39, 00186 Roma, Italy
    Mathematics in Applied Sciences and Engineering Research Group, Scientific Research Center, Al-Ayen University, Nasiriyah 64001, Iraq)

  • Ali Akgül

    (Department of Mathematics, Art and Science Faculty, Siirt University, Siirt 56100, Turkey)

Abstract

Placement of fins in enclosures has promising utilization in advanced technological processes due to their role as heat reducing/generating elements such as in conventional furnaces, economizers, gas turbines, heat exchangers, superconductive heaters and so forth. The advancement in technologies in power engineering and microelectronics requires the development of effective cooling systems. This evolution involves the utilization of fins of significantly variable geometries enclosed in cavities to increase the heat elimination from heat-generating mechanisms. Since fins are considered to play an effective role in the escalation of heat transmission, the current study is conducted to examine the transfer of heat in cavities embedding fins, as well as the effect of a range of several parameters upon the transmission of energy. The following research is supplemented with the interpretation of the thermo-physical aspects of a power-law liquid enclosed in a trapezoidal cavity embedding a U-shaped fin. The Boussinesq approximation is utilized to generate the mathematical attributes of factors describing natural convection, which are then used in the momentum equation. Furthermore, the Fourier law is applied to formulate the streaming heat inside the fluid flow region. The formulated system describing the problem is non-dimensionalized using similarity transformations. The geometry of the problem comprises a trapezoidal cavity with a non-uniformly heated U-shaped fin introduced at the center of the base of the enclosure. The boundaries of the cavity are at no-slip conditions. Non-uniform heating is provided at the walls ( l 1 and l 2 ) , curves ( c 1 , c 2 and c 3 ) and surfaces ( s 1 and s 2 ) of the fin; the upper wall is insulated whereas the base and sidewalls of the enclosure are kept cold. The solution of the non-dimensionalized equations is procured by the Galerkin finite element procedure. To acquire information regarding the change in displacement w.r.t time and temperature, supplementary quadratic interpolating functions are also observed. An amalgam meshing is constructed to elaborate the triangular and quadrilateral elements of the trapezoidal domain. Observation of significant variation in the flow configurations for a specified range of parameters is taken into consideration i.e., 0.5 ≤ n ≤ 1.5 and 10 4 ≤ R a ≤ 10 6 . Furthermore, flow structures in the form of velocity profiles, streamlines, and temperature contours are interpreted for the parameters taken into account. It is deduced from the study that ascending magnitude of ( R a ) elevates level of kinetic energy and magnitude of heat flux; however, a contrary configuration is encapsulated for the power-law index. Navier–Stokes equations constituting the phenomenon are written with the help of non-dimensionalized stream function, temperature profiles, and vortices, and the solutions are acquired using the finite element method. Furthermore, the attained outcomes are accessible through velocity and temperature profiles. It is worth highlighting the fact that the following analysis enumerates the pseudo-plastic, viscous and dilatant behavior of the fluid for different values of ( n ) . This study highlights that the momentum profile and the heat transportation increase by increasing ( R a ) and decline as the viscosity of the fluid increases. Overall, it can be seen from the current study that heat transportation increases with the insertion of a fin in the cavity. The current communication signifies the phenomenon of a power-law fluid flow filling a trapezoidal cavity enclosing a U-shaped fin. Previously, researchers have studied such phenomena mostly in Newtonian fluids, hence the present effort presents novelty regarding consideration of a power-law liquid in a trapezoidal enclosure by the placement of a U-shaped fin.

Suggested Citation

  • Sardar Bilal & Maryam Rehman & Samad Noeiaghdam & Hijaz Ahmad & Ali Akgül, 2021. "Numerical Analysis of Natural Convection Driven Flow of a Non-Newtonian Power-Law Fluid in a Trapezoidal Enclosure with a U-Shaped Constructal," Energies, MDPI, vol. 14(17), pages 1-17, August.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:17:p:5355-:d:623994
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/17/5355/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/17/5355/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Goodarzi, Marjan & D’Orazio, Annunziata & Keshavarzi, Ahmad & Mousavi, Sayedali & Karimipour, Arash, 2018. "Develop the nano scale method of lattice Boltzmann to predict the fluid flow and heat transfer of air in the inclined lid driven cavity with a large heat source inside, Two case studies: Pure natural ," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 210-233.
    2. M. Goodarzi & M. R. Safaei & A. Karimipour & K. Hooman & M. Dahari & S. N. Kazi & E. Sadeghinezhad, 2014. "Comparison of the Finite Volume and Lattice Boltzmann Methods for Solving Natural Convection Heat Transfer Problems inside Cavities and Enclosures," Abstract and Applied Analysis, Hindawi, vol. 2014, pages 1-15, February.
    3. Abdi, Amir & Martin, Viktoria & Chiu, Justin N.W., 2019. "Numerical investigation of melting in a cavity with vertically oriented fins," Applied Energy, Elsevier, vol. 235(C), pages 1027-1040.
    4. Lewandowski, Witold M. & Radziemska, Ewa & Buzuk, Maciej & Bieszk, Henryk, 2000. "Free convection heat transfer and fluid flow above horizontal rectangular plates," Applied Energy, Elsevier, vol. 66(2), pages 177-197, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Muhammad Kamran Alam & Khadija Bibi & Aamir Khan & Samad Noeiaghdam, 2021. "Dufour and Soret Effect on Viscous Fluid Flow between Squeezing Plates under the Influence of Variable Magnetic Field," Mathematics, MDPI, vol. 9(19), pages 1-28, September.
    2. Weihua Sun & Zhiyi Yu & Wenwu Zhang, 2022. "Effect of Shear-Thinning Property on the Energy Performance and Flow Field of an Axial Flow Pump," Energies, MDPI, vol. 15(7), pages 1-15, March.
    3. Muhammad Sohail Khan & Sun Mei & Shabnam & Unai Fernandez-Gamiz & Samad Noeiaghdam & Aamir Khan & Said Anwar Shah, 2022. "Electroviscous Effect of Water-Base Nanofluid Flow between Two Parallel Disks with Suction/Injection Effect," Mathematics, MDPI, vol. 10(6), pages 1-15, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bahrami, Mehrdad & Akbari, Mohammad & Bagherzadeh, Seyed Amin & Karimipour, Arash & Afrand, Masoud & Goodarzi, Marjan, 2019. "Develop 24 dissimilar ANNs by suitable architectures & training algorithms via sensitivity analysis to better statistical presentation: Measure MSEs between targets & ANN for Fe–CuO/Eg–Water nanofluid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 519(C), pages 159-168.
    2. Mahyari, Amirhossein Ansari & Karimipour, Arash & Afrand, Masoud, 2019. "Effects of dispersed added Graphene Oxide-Silicon Carbide nanoparticles to present a statistical formulation for the mixture thermal properties," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 98-112.
    3. Shahsavar, Amin & Bagherzadeh, Seyed Amin & Mahmoudi, Boshra & Hajizadeh, Ahmad & Afrand, Masoud & Nguyen, Truong Khang, 2019. "Robust Weighted Least Squares Support Vector Regression algorithm to estimate the nanofluid thermal properties of water/graphene Oxide–Silicon carbide mixture," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 1418-1428.
    4. Bagherzadeh, Seyed Amin & D’Orazio, Annunziata & Karimipour, Arash & Goodarzi, Marjan & Bach, Quang-Vu, 2019. "A novel sensitivity analysis model of EANN for F-MWCNTs–Fe3O4/EG nanofluid thermal conductivity: Outputs predicted analytically instead of numerically to more accuracy and less costs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 406-415.
    5. Nafchi, Peyman Mirzakhani & Karimipour, Arash & Afrand, Masoud, 2019. "The evaluation on a new non-Newtonian hybrid mixture composed of TiO2/ZnO/EG to present a statistical approach of power law for its rheological and thermal properties," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 1-18.
    6. Peng, Yeping & Parsian, Amir & Khodadadi, Hossein & Akbari, Mohammad & Ghani, Kamal & Goodarzi, Marjan & Bach, Quang-Vu, 2020. "Develop optimal network topology of artificial neural network (AONN) to predict the hybrid nanofluids thermal conductivity according to the empirical data of Al2O3 – Cu nanoparticles dispersed in ethy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    7. Karimipour, Arash & Bagherzadeh, Seyed Amin & Taghipour, Abdolmajid & Abdollahi, Ali & Safaei, Mohammad Reza, 2019. "A novel nonlinear regression model of SVR as a substitute for ANN to predict conductivity of MWCNT-CuO/water hybrid nanofluid based on empirical data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 89-97.
    8. Tian, Zhe & Arasteh, Hossein & Parsian, Amir & Karimipour, Arash & Safaei, Mohammad Reza & Nguyen, Truong Khang, 2019. "Estimate the shear rate & apparent viscosity of multi-phased non-Newtonian hybrid nanofluids via new developed Support Vector Machine method coupled with sensitivity analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    9. Alipour, Pedram & Toghraie, Davood & Karimipour, Arash & Hajian, Mehdi, 2019. "Modeling different structures in perturbed Poiseuille flow in a nanochannel by using of molecular dynamics simulation: Study the equilibrium," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 13-30.
    10. Wei, Li & Arasteh, Hossein & abdollahi, Ali & Parsian, Amir & Taghipour, Abdolmajid & Mashayekhi, Ramin & Tlili, Iskander, 2020. "Locally weighted moving regression: A non-parametric method for modeling nanofluid features of dynamic viscosity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    11. Ahmadi Balootaki, Azam & Karimipour, Arash & Toghraie, Davood, 2018. "Nano scale lattice Boltzmann method to simulate the mixed convection heat transfer of air in a lid-driven cavity with an endothermic obstacle inside," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 681-701.
    12. M. M. Sarafraz & Alireza Dareh Baghi & Mohammad Reza Safaei & Arturo S. Leon & R. Ghomashchi & Marjan Goodarzi & Cheng-Xian Lin, 2019. "Assessment of Iron Oxide (III)–Therminol 66 Nanofluid as a Novel Working Fluid in a Convective Radiator Heating System for Buildings," Energies, MDPI, vol. 12(22), pages 1-13, November.
    13. Alsarraf, Jalal & Moradikazerouni, Alireza & Shahsavar, Amin & Afrand, Masoud & Salehipour, Hamzeh & Tran, Minh Duc, 2019. "Hydrothermal analysis of turbulent boehmite alumina nanofluid flow with different nanoparticle shapes in a minichannel heat exchanger using two-phase mixture model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 275-288.
    14. Naoki Takada & Akio Tomiyama, 2007. "Numerical Simulation Of Isothermal And Thermal Two-Phase Flows Using Phase-Field Modeling," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 18(04), pages 536-545.
    15. Artur Cristea & Victor Sofonea, 2003. "Reduction Of Spurious Velocity In Finite Difference Lattice Boltzmann Models For Liquid–Vapor Systems," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 14(09), pages 1251-1266.
    16. Dai, Renkun & Li, Wei & Mostaghimi, Javad & Wang, Qiuwang & Zeng, Min, 2020. "On the optimal heat source location of partially heated energy storage process using the newly developed simplified enthalpy based lattice Boltzmann method," Applied Energy, Elsevier, vol. 275(C).
    17. Ewelina Radomska & Lukasz Mika & Karol Sztekler & Lukasz Lis, 2020. "The Impact of Heat Exchangers’ Constructions on the Melting and Solidification Time of Phase Change Materials," Energies, MDPI, vol. 13(18), pages 1-44, September.
    18. Victor Sofonea & Robert F. Sekerka, 2005. "Diffusivity Of Two-Component Isothermal Finite Difference Lattice Boltzmann Models," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 16(07), pages 1075-1090.
    19. Huang, Si-Min & Yang, Minlin, 2013. "Longitudinal fluid flow and heat transfer between an elliptical hollow fiber membrane tube bank used for air humidification," Applied Energy, Elsevier, vol. 112(C), pages 75-82.
    20. Nakhchi, M.E. & Hatami, M. & Rahmati, M., 2021. "A numerical study on the effects of nanoparticles and stair fins on performance improvement of phase change thermal energy storages," Energy, Elsevier, vol. 215(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:17:p:5355-:d:623994. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.