IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i19p2404-d644306.html
   My bibliography  Save this article

Dufour and Soret Effect on Viscous Fluid Flow between Squeezing Plates under the Influence of Variable Magnetic Field

Author

Listed:
  • Muhammad Kamran Alam

    (Department of Pure and Applied Mathematics, The University of Haripur, Haripur 22620, Pakistan)

  • Khadija Bibi

    (Department of Pure and Applied Mathematics, The University of Haripur, Haripur 22620, Pakistan)

  • Aamir Khan

    (Department of Pure and Applied Mathematics, The University of Haripur, Haripur 22620, Pakistan)

  • Samad Noeiaghdam

    (Industrial Mathematics Laboratory, Baikal School of BRICS, Irkutsk National Research Technical University, 664074 Irkutsk, Russia
    Department of Applied Mathematics and Programming, South Ural State University, Lenin Prospect 76, 454080 Chelyabinsk, Russia)

Abstract

The aim of this article is to investigate the effect of mass and heat transfer on unsteady squeeze flow of viscous fluid under the influence of variable magnetic field. The flow is observed in a rotating channel. The unsteady equations of mass and momentum conservation are coupled with the variable magnetic field and energy equations. By using some appropriate similarity transformations, the partial differential equations obtained are then converted into a system of ordinary differential equations and are solved by Homotopy Analysis Method (HAM). The influence of the natural parameters are investigated for the velocity field components, magnetic field components, heat and mass transfer. A direct effect of the squeeze Reynold number is observed on both concentration and temperature. Moreover, increasing the magnetic Reynold number shows an increase in the fluid temperature, but in the case of concentration, an inverse relation is observed. Furthermore, a decreasing effect of the Dufour number is observed on both concentration and temperature distribution. Besides, in case of the Soret number, a direct effect is observed on concentration, but an inverse effect can be seen on temperature distribution. Different effects are shown through graphs in this study and an error analysis is also presented through tables and graphs.

Suggested Citation

  • Muhammad Kamran Alam & Khadija Bibi & Aamir Khan & Samad Noeiaghdam, 2021. "Dufour and Soret Effect on Viscous Fluid Flow between Squeezing Plates under the Influence of Variable Magnetic Field," Mathematics, MDPI, vol. 9(19), pages 1-28, September.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:19:p:2404-:d:644306
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/19/2404/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/19/2404/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sardar Bilal & Maryam Rehman & Samad Noeiaghdam & Hijaz Ahmad & Ali Akgül, 2021. "Numerical Analysis of Natural Convection Driven Flow of a Non-Newtonian Power-Law Fluid in a Trapezoidal Enclosure with a U-Shaped Constructal," Energies, MDPI, vol. 14(17), pages 1-17, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pengfei Zheng & Baolin Hou & Mingsong Zou, 2022. "Magnetorheological Fluid of High-Speed Unsteady Flow in a Narrow-Long Gap: An Unsteady Numerical Model and Analysis," Mathematics, MDPI, vol. 10(14), pages 1-25, July.
    2. Muhammad Sohail Khan & Sun Mei & Shabnam & Unai Fernandez-Gamiz & Samad Noeiaghdam & Aamir Khan & Said Anwar Shah, 2022. "Electroviscous Effect of Water-Base Nanofluid Flow between Two Parallel Disks with Suction/Injection Effect," Mathematics, MDPI, vol. 10(6), pages 1-15, March.
    3. Muhammad Kamran Alam & Khadija Bibi & Aamir Khan & Unai Fernandez-Gamiz & Samad Noeiaghdam, 2022. "The Effect of Variable Magnetic Field on Viscous Fluid between 3-D Rotatory Vertical Squeezing Plates: A Computational Investigation," Energies, MDPI, vol. 15(7), pages 1-21, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weihua Sun & Zhiyi Yu & Wenwu Zhang, 2022. "Effect of Shear-Thinning Property on the Energy Performance and Flow Field of an Axial Flow Pump," Energies, MDPI, vol. 15(7), pages 1-15, March.
    2. Muhammad Sohail Khan & Sun Mei & Shabnam & Unai Fernandez-Gamiz & Samad Noeiaghdam & Aamir Khan & Said Anwar Shah, 2022. "Electroviscous Effect of Water-Base Nanofluid Flow between Two Parallel Disks with Suction/Injection Effect," Mathematics, MDPI, vol. 10(6), pages 1-15, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:19:p:2404-:d:644306. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.