IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i16p4936-d612994.html
   My bibliography  Save this article

Recent Approaches for the Production of High Value-Added Biofuels from Gelatinous Wastewater

Author

Listed:
  • Ahmed Tawfik

    (Water Pollution Research Department, National Research Centre, Giza 12622, Egypt)

  • Shou-Qing Ni

    (Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China)

  • Hanem. M. Awad

    (Department Tanning Materials and Leather Technology & Regulatory Toxicology Lab, National Research Centre, Centre of Excellence, Giza 12622, Egypt)

  • Sherif Ismail

    (Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
    Environmental Engineering Department, Zagazig University, Zagazig 44519, Egypt)

  • Vinay Kumar Tyagi

    (Environmental Biotechnology Group (EBiTG), Department of Civil Engineering, Indian Institute of Technology, Roorkee 247667, India)

  • Mohd Shariq Khan

    (Department of Chemical Engineering, Dhofar University, Salalah 211, Oman)

  • Muhammad Abdul Qyyum

    (School of Chemical Engineering, Yeungnam University, Gyeongsan 712-749, Korea)

  • Moonyong Lee

    (School of Chemical Engineering, Yeungnam University, Gyeongsan 712-749, Korea)

Abstract

Gelatin production is the most industry polluting process where huge amounts of raw organic materials and chemicals (HCl, NaOH, Ca 2+ ) are utilized in the manufacturing accompanied by voluminous quantities of end-pipe effluent. The gelatinous wastewater (GWW) contains a large fraction of protein and lipids with biodegradability (BOD/COD ratio) exceeding 0.6. Thus, it represents a promising low-cost substrate for the generation of biofuels, i.e., H 2 and CH 4, by the anaerobic digestion process. This review comprehensively describes the anaerobic technologies employed for simultaneous treatment and energy recovery from GWW. The emphasis was afforded on factors affecting the biofuels productivity from anaerobic digestion of GWW, i.e., protein concentration, organic loading rate (OLR), hydraulic retention time (HRT), the substrate to inoculum ( S 0 / X 0 ) ratio, type of mixed culture anaerobes, carbohydrates concentration, volatile fatty acids (VFAs), ammonia and alkalinity/VFA ratio, and reactor configurations. Economic values and future perspectives that require more attention are also outlined to facilitate further advancement and achieve practicality in this domain.

Suggested Citation

  • Ahmed Tawfik & Shou-Qing Ni & Hanem. M. Awad & Sherif Ismail & Vinay Kumar Tyagi & Mohd Shariq Khan & Muhammad Abdul Qyyum & Moonyong Lee, 2021. "Recent Approaches for the Production of High Value-Added Biofuels from Gelatinous Wastewater," Energies, MDPI, vol. 14(16), pages 1-18, August.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:4936-:d:612994
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/16/4936/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/16/4936/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Elena Albini & Isabella Pecorini & Giovanni Ferrara, 2019. "Improvement of Digestate Stability Using Dark Fermentation and Anaerobic Digestion Processes," Energies, MDPI, vol. 12(18), pages 1-15, September.
    2. Edilson León Moreno Cárdenas & Arley David Zapata-Zapata & Daehwan Kim, 2020. "Modeling Dark Fermentation of Coffee Mucilage Wastes for Hydrogen Production: Artificial Neural Network Model vs. Fuzzy Logic Model," Energies, MDPI, vol. 13(7), pages 1-13, April.
    3. Gabriel S. Aruwajoye & Alaika Kassim & Akshay K. Saha & Evariste B. Gueguim Kana, 2020. "Prospects for the Improvement of Bioethanol and Biohydrogen Production from Mixed Starch-Based Agricultural Wastes," Energies, MDPI, vol. 13(24), pages 1-22, December.
    4. Meky, Naira & Elreedy, Ahmed & Ibrahim, Mona G. & Fujii, Manabu & Tawfik, Ahmed, 2021. "Intermittent versus sequential dark-photo fermentative hydrogen production as an alternative for bioenergy recovery from protein-rich effluents," Energy, Elsevier, vol. 217(C).
    5. Robert Grabarczyk & Krzysztof Urbaniec & Jacek Wernik & Marian Trafczynski, 2019. "Evaluation of the Two-Stage Fermentative Hydrogen Production from Sugar Beet Molasses," Energies, MDPI, vol. 12(21), pages 1-15, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Zexi & Ding, Ke & Ma, Xiaojun & Tang, Shuai & Wang, Zixin & Lu, Haifeng & Jiang, Weizhong & Si, Buchun, 2023. "Hydrodynamic design of down-flow packed bed reactor regulated the biohydrogen production and microbial enrichment," Energy, Elsevier, vol. 271(C).
    2. Shen, Qiuwan & Shao, Zicheng & Li, Shian & Yang, Guogang & Sunden, Bengt, 2023. "Effects of B-site Al doping on microstructure characteristics and hydrogen production performance of novel LaNixAl1-xO3-δ perovskite in methanol steam reforming," Energy, Elsevier, vol. 268(C).
    3. Estévez, Sofía & Rebolledo-Leiva, Ricardo & Hernández, Diógenes & González-García, Sara & Feijoo, Gumersindo & Moreira, María Teresa, 2023. "Benchmarking composting, anaerobic digestion and dark fermentation for apple vinasse management as a strategy for sustainable energy production," Energy, Elsevier, vol. 274(C).
    4. Theresa Menzel & Peter Neubauer & Stefan Junne, 2020. "Role of Microbial Hydrolysis in Anaerobic Digestion," Energies, MDPI, vol. 13(21), pages 1-29, October.
    5. Patel, Sanjay K.S. & Das, Devashish & Kim, Sun Chang & Cho, Byung-Kwan & Kalia, Vipin Chandra & Lee, Jung-Kul, 2021. "Integrating strategies for sustainable conversion of waste biomass into dark-fermentative hydrogen and value-added products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    6. Anita Šalić & Bruno Zelić, 2022. "A Game Changer: Microfluidic Technology for Enhancing Biohydrogen Production—Small Size for Great Performance," Energies, MDPI, vol. 15(19), pages 1-22, September.
    7. Isabella Pecorini & Eleonora Peruzzi & Elena Albini & Serena Doni & Cristina Macci & Grazia Masciandaro & Renato Iannelli, 2020. "Evaluation of MSW Compost and Digestate Mixtures for a Circular Economy Application," Sustainability, MDPI, vol. 12(7), pages 1-18, April.
    8. Moreira, F.S. & Rodrigues, M.S. & Sousa, L.M. & Batista, F.R.X. & Ferreira, J.S. & Cardoso, V.L., 2022. "Single-stage repeated batch cycles using co-culture of Enterobacter cloacae and purple non-sulfur bacteria for hydrogen production," Energy, Elsevier, vol. 239(PE).
    9. Tomonori Miyagawa & Mika Goto, 2022. "Hydrogen Production Cost Forecasts since the 1970s and Implications for Technological Development," Energies, MDPI, vol. 15(12), pages 1-24, June.
    10. Johannes Full & Steffen Merseburg & Robert Miehe & Alexander Sauer, 2021. "A New Perspective for Climate Change Mitigation—Introducing Carbon-Negative Hydrogen Production from Biomass with Carbon Capture and Storage (HyBECCS)," Sustainability, MDPI, vol. 13(7), pages 1-22, April.
    11. Eraky, Mohamed & Nasr, Mahmoud & Elsayed, Mahdy & Ai, Ping & Tawfik, Ahmed, 2023. "Synergistic interaction of tween 20 and magnesium@ functionalized graphene oxide nano-composite for dual productivity of biohydrogen and biochar from onion peel waste," Renewable Energy, Elsevier, vol. 216(C).
    12. Joanna Kazimierowicz & Marcin Dębowski & Marcin Zieliński, 2022. "Progress and Challenges in Biohydrogen Production," Energies, MDPI, vol. 15(15), pages 1-3, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:4936-:d:612994. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.