IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i16p4831-d610558.html
   My bibliography  Save this article

Heating and Lighting Load Disaggregation Using Frequency Components and Convolutional Bidirectional Long Short-Term Memory Method

Author

Listed:
  • Mingzhe Zou

    (School of Engineering, The University of Edinburgh, Edinburgh EH9 3DW, UK)

  • Shuyang Zhu

    (School of Engineering, The University of Edinburgh, Edinburgh EH9 3DW, UK)

  • Jiacheng Gu

    (School of Informatics, The University of Edinburgh, Edinburgh EH8 9AB, UK)

  • Lidija M. Korunovic

    (Faculty of Electronic Engineering, University of Nis, 18000 Niš, Serbia)

  • Sasa Z. Djokic

    (School of Engineering, The University of Edinburgh, Edinburgh EH9 3DW, UK)

Abstract

Load disaggregation for the identification of specific load types in the total demands (e.g., demand-manageable loads, such as heating or cooling loads) is becoming increasingly important for the operation of existing and future power supply systems. This paper introduces an approach in which periodical changes in the total demands (e.g., daily, weekly, and seasonal variations) are disaggregated into corresponding frequency components and correlated with the same frequency components in the meteorological variables (e.g., temperature and solar irradiance), allowing to select combinations of frequency components with the strongest correlations as the additional explanatory variables. The paper first presents a novel Fourier series regression method for obtaining target frequency components, which is illustrated on two household-level datasets and one substation-level dataset. These results show that correlations between selected disaggregated frequency components are stronger than the correlations between the original non-disaggregated data. Afterwards, convolutional neural network (CNN) and bidirectional long short-term memory (BiLSTM) methods are used to represent dependencies among multiple dimensions and to output the estimated disaggregated time series of specific types of loads, where Bayesian optimisation is applied to select hyperparameters of CNN-BiLSTM model. The CNN-BiLSTM and other deep learning models are reported to have excellent performance in many regression problems, but they are often applied as “black box” models without further exploration or analysis of the modelled processes. Therefore, the paper compares CNN-BiLSTM model in which correlated frequency components are used as the additional explanatory variables with a naïve CNN-BiLSTM model (without frequency components). The presented case studies, related to the identification of electrical heating load and lighting load from the total demands, show that the accuracy of disaggregation improves after specific frequency components of the total demand are correlated with the corresponding frequency components of temperature and solar irradiance, i.e., that frequency component-based CNN-BiLSTM model provides a more accurate load disaggregation. Obtained results are also compared/benchmarked against the two other commonly used models, confirming the benefits of the presented load disaggregation methodology.

Suggested Citation

  • Mingzhe Zou & Shuyang Zhu & Jiacheng Gu & Lidija M. Korunovic & Sasa Z. Djokic, 2021. "Heating and Lighting Load Disaggregation Using Frequency Components and Convolutional Bidirectional Long Short-Term Memory Method," Energies, MDPI, vol. 14(16), pages 1-24, August.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:4831-:d:610558
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/16/4831/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/16/4831/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pascal A. Schirmer & Iosif Mporas, 2019. "Statistical and Electrical Features Evaluation for Electrical Appliances Energy Disaggregation," Sustainability, MDPI, vol. 11(11), pages 1-14, June.
    2. Hauke Jan & Kossowski Tomasz, 2011. "Comparison of Values of Pearson's and Spearman's Correlation Coefficients on the Same Sets of Data," Quaestiones Geographicae, Sciendo, vol. 30(2), pages 87-93, June.
    3. Hsueh-Hsien Chang, 2012. "Non-Intrusive Demand Monitoring and Load Identification for Energy Management Systems Based on Transient Feature Analyses," Energies, MDPI, vol. 5(11), pages 1-21, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huangjie Gong & Rosemary E. Alden & Aron Patrick & Dan M. Ionel, 2022. "Forecast of Community Total Electric Load and HVAC Component Disaggregation through a New LSTM-Based Method," Energies, MDPI, vol. 15(9), pages 1-17, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hasan Rafiq & Xiaohan Shi & Hengxu Zhang & Huimin Li & Manesh Kumar Ochani, 2020. "A Deep Recurrent Neural Network for Non-Intrusive Load Monitoring Based on Multi-Feature Input Space and Post-Processing," Energies, MDPI, vol. 13(9), pages 1-26, May.
    2. Javier García López & Raffaele Sisto & Javier Benayas & Álvaro de Juanes & Julio Lumbreras & Carlos Mataix, 2021. "Assessment of the Results and Methodology of the Sustainable Development Index for Spanish Cities," Sustainability, MDPI, vol. 13(11), pages 1-29, June.
    3. Adriana Gómez-Cabrera & Amalia Sanz-Benlloch & Laura Montalban-Domingo & Jose Luis Ponz-Tienda & Eugenio Pellicer, 2020. "Identification of Factors Affecting the Performance of Rural Road Projects in Colombia," Sustainability, MDPI, vol. 12(18), pages 1-18, September.
    4. Judit Bar-Ilan & Mark Levene, 2015. "The hw-rank: an h-index variant for ranking web pages," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(3), pages 2247-2253, March.
    5. Ma Zhong & Rong Xu & Xinyi Liao & Shuangli Zhang, 2019. "Do CSR Ratings Converge in China? A Comparison Between RKS and Hexun Scores," Sustainability, MDPI, vol. 11(14), pages 1-20, July.
    6. Loredana Antronico & Roberto Coscarelli & Francesco De Pascale & Dante Di Matteo, 2020. "Climate Change and Social Perception: A Case Study in Southern Italy," Sustainability, MDPI, vol. 12(17), pages 1-24, August.
    7. Liu, Bo & Luan, Wenpeng & Yu, Yixin, 2017. "Dynamic time warping based non-intrusive load transient identification," Applied Energy, Elsevier, vol. 195(C), pages 634-645.
    8. Ishan Goel & Sukant Khurana, 2018. "A Bayesian measure of association that utilizes the underlying distributions of noise and information," PLOS ONE, Public Library of Science, vol. 13(8), pages 1-21, August.
    9. Wesley Angelino de Souza & Fernando Deluno Garcia & Fernando Pinhabel Marafão & Luiz Carlos Pereira da Silva & Marcelo Godoy Simões, 2019. "Load Disaggregation Using Microscopic Power Features and Pattern Recognition," Energies, MDPI, vol. 12(14), pages 1-18, July.
    10. Fang Yang & Chunyan Shuai & Qian Qian & Wencong Wang & Mingwei He & Min He & Jaeyoung Lee, 2023. "Predictability of short-term passengers’ origin and destination demands in urban rail transit," Transportation, Springer, vol. 50(6), pages 2375-2401, December.
    11. Wulf, David & Bertsch, Valentin, 2016. "A natural language generation approach to support understanding and traceability of multi-dimensional preferential sensitivity analysis in multi-criteria decision making," MPRA Paper 75025, University Library of Munich, Germany.
    12. Anne Warchold & Prajal Pradhan & Jürgen P. Kropp, 2021. "Variations in sustainable development goal interactions: Population, regional, and income disaggregation," Sustainable Development, John Wiley & Sons, Ltd., vol. 29(2), pages 285-299, March.
    13. Yizhong Huan & Lingqing Wang & Mark Burgman & Haitao Li & Yurong Yu & Jianpeng Zhang & Tao Liang, 2022. "A multi‐perspective composite assessment framework for prioritizing targets of sustainable development goals," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(5), pages 833-847, October.
    14. Liang Zhu & Christine Lim & Wenjun Xie & Yuan Wu, 2017. "Analysis of tourism demand serial dependence structure for forecasting," Tourism Economics, , vol. 23(7), pages 1419-1436, November.
    15. Lefeng Cheng & Zhiyi Zhang & Haorong Jiang & Tao Yu & Wenrui Wang & Weifeng Xu & Jinxiu Hua, 2018. "Local Energy Management and Optimization: A Novel Energy Universal Service Bus System Based on Energy Internet Technologies," Energies, MDPI, vol. 11(5), pages 1-38, May.
    16. Pengzhi Wei & Shaofeng Xie & Liangke Huang & Lilong Liu, 2021. "Ingestion of GNSS-Derived ZTD and PWV for Spatial Interpolation of PM 2.5 Concentration in Central and Southern China," IJERPH, MDPI, vol. 18(15), pages 1-26, July.
    17. Zhong, Yingzi & Han, Weiqiang & Jin, Chao & Tian, Xiaocong & Liu, Haifeng, 2022. "Study on effects of the hydroxyl group position and carbon chain length on combustion and emission characteristics of Reactivity Controlled Compression Ignition (RCCI) engine fueled with low-carbon st," Energy, Elsevier, vol. 239(PC).
    18. Tiffany Hutcheson & Graeme Newell, 2018. "Decision-making in property Investment by Property Fund Managers," ERES eres2018_295, European Real Estate Society (ERES).
    19. Valencia García, Dalia Jazmin & Lillo Rodríguez, Rosa Elvira & Romo, Juan, 2013. "Spearman coefficient for functions," DES - Working Papers. Statistics and Econometrics. WS ws133329, Universidad Carlos III de Madrid. Departamento de Estadística.
    20. Norhaidah Asrah & Maman Djauhari & Ebi Shahrin Suleiman, 2014. "Work Attitude among Malaysian Academicians in the Public Universities: A Social Network Analysis," Modern Applied Science, Canadian Center of Science and Education, vol. 8(5), pages 1-9, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:4831-:d:610558. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.