IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i13p3875-d583556.html
   My bibliography  Save this article

Parametric Regression Applied for Determination of Electrical Parameters of Synchronous and Induction Generators Operating in Parallel on the Electrical Energy Repowering System

Author

Listed:
  • Alan H. F. Silva

    (Studies and Research in Science and Technology Group (GCITE), Federal Institute of Goias (IFG), Goiania 74055-110, Brazil
    Electrical, Mechanical & Computer Engineering School (EMC), Federal University of Goias (UFG), Goiania 74605-010, Brazil)

  • Alana S. Magalhaes

    (Studies and Research in Science and Technology Group (GCITE), Federal Institute of Goias (IFG), Goiania 74055-110, Brazil
    Electrical, Mechanical & Computer Engineering School (EMC), Federal University of Goias (UFG), Goiania 74605-010, Brazil)

  • Junio S. Bulhoes

    (Studies and Research in Science and Technology Group (GCITE), Federal Institute of Goias (IFG), Goiania 74055-110, Brazil
    Electrical, Mechanical & Computer Engineering School (EMC), Federal University of Goias (UFG), Goiania 74605-010, Brazil)

  • Gabriel A. Wainer

    (Visualization, Simulation and Modeling (VSIM), Carleton University, Ottawa, ON K1S 5B6, Canada)

  • Gevanne P. Furriel

    (Electrical, Mechanical & Computer Engineering School (EMC), Federal University of Goias (UFG), Goiania 74605-010, Brazil
    Agroindustrial Automation and Precision Agriculture (AutoAgri), Instituto Federal Goiano (IFGoiano), Trindade 75389-269, Brazil)

  • Wesley P. Calixto

    (Studies and Research in Science and Technology Group (GCITE), Federal Institute of Goias (IFG), Goiania 74055-110, Brazil
    Electrical, Mechanical & Computer Engineering School (EMC), Federal University of Goias (UFG), Goiania 74605-010, Brazil
    Visualization, Simulation and Modeling (VSIM), Carleton University, Ottawa, ON K1S 5B6, Canada)

Abstract

The purpose of this work is to determine the values of electrical parameters of synchronous and induction machines to validate electrical interactions between an induction generator and a synchronous generator. The generators are connected in two ways: (i) isolated from the common bus and (ii) parallel to the common bus in steady state, subject to nonlinear load. They are old and refurbished machines; thus, the parametric regression methodology is used to determine the electrical parameter values. After the computational model validation, analyses are performed by various system configurations to confirm the repowering and to analyze the system harmonic current flow. The results obtained comparing the computer simulation and experimental tests prove that the validated model represents the real system. With an experimentally validated computational model, it is possible to verify the occurrence of system repowering and the increased value of harmonic distortions in the induction generator terminals, acting as a preferential path for harmonic currents.

Suggested Citation

  • Alan H. F. Silva & Alana S. Magalhaes & Junio S. Bulhoes & Gabriel A. Wainer & Gevanne P. Furriel & Wesley P. Calixto, 2021. "Parametric Regression Applied for Determination of Electrical Parameters of Synchronous and Induction Generators Operating in Parallel on the Electrical Energy Repowering System," Energies, MDPI, vol. 14(13), pages 1-21, June.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:13:p:3875-:d:583556
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/13/3875/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/13/3875/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Padhy, Mamata Kumari & Saini, R.P., 2008. "A review on silt erosion in hydro turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(7), pages 1974-1987, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. João R. B. Paiva & Alana S. Magalhães & Pedro H. F. Moraes & Júnio S. Bulhões & Wesley P. Calixto, 2021. "Stability Metric Based on Sensitivity Analysis Applied to Electrical Repowering System," Energies, MDPI, vol. 14(22), pages 1-21, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Padhy, M.K. & Saini, R.P., 2011. "Study of silt erosion on performance of a Pelton turbine," Energy, Elsevier, vol. 36(1), pages 141-147.
    2. Ming Zhang & David Valentin & Carme Valero & Mònica Egusquiza & Weiqiang Zhao, 2018. "Numerical Study on the Dynamic Behavior of a Francis Turbine Runner Model with a Crack," Energies, MDPI, vol. 11(7), pages 1-18, June.
    3. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    4. Thapa, Biraj Singh & Thapa, Bhola & Dahlhaug, Ole G., 2012. "Empirical modelling of sediment erosion in Francis turbines," Energy, Elsevier, vol. 41(1), pages 386-391.
    5. Leguizamón, Sebastián & Alimirzazadeh, Siamak & Jahanbakhsh, Ebrahim & Avellan, François, 2020. "Multiscale simulation of erosive wear in a prototype-scale Pelton runner," Renewable Energy, Elsevier, vol. 151(C), pages 204-215.
    6. Arash YoosefDoost & William David Lubitz, 2020. "Archimedes Screw Turbines: A Sustainable Development Solution for Green and Renewable Energy Generation—A Review of Potential and Design Procedures," Sustainability, MDPI, vol. 12(18), pages 1-34, September.
    7. Liu, Xin & Luo, Yongyao & Karney, Bryan W. & Wang, Weizheng, 2015. "A selected literature review of efficiency improvements in hydraulic turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 18-28.
    8. Thapa, Biraj Singh & Dahlhaug, Ole Gunnar & Thapa, Bhola, 2018. "Flow measurements around guide vanes of Francis turbine: A PIV approach," Renewable Energy, Elsevier, vol. 126(C), pages 177-188.
    9. Rai, Anant Kumar & Kumar, Arun & Staubli, Thomas & Yexiang, Xiao, 2020. "Interpretation and application of the hydro-abrasive erosion model from IEC 62364 (2013) for Pelton turbines," Renewable Energy, Elsevier, vol. 160(C), pages 396-408.
    10. Padhy, M.K. & Saini, R.P., 2012. "Study of silt erosion mechanism in Pelton turbine buckets," Energy, Elsevier, vol. 39(1), pages 286-293.
    11. Md Rakibuzzaman & Hyoung-Ho Kim & Kyungwuk Kim & Sang-Ho Suh & Kyung Yup Kim, 2019. "Numerical Study of Sediment Erosion Analysis in Francis Turbine," Sustainability, MDPI, vol. 11(5), pages 1-18, March.
    12. Goyal, Rahul & Gandhi, Bhupendra K., 2018. "Review of hydrodynamics instabilities in Francis turbine during off-design and transient operations," Renewable Energy, Elsevier, vol. 116(PA), pages 697-709.
    13. Padhy, M.K. & Saini, R.P., 2009. "Effect of size and concentration of silt particles on erosion of Pelton turbine buckets," Energy, Elsevier, vol. 34(10), pages 1477-1483.
    14. Zaher Mundher Yaseen & Ameen Mohammed Salih Ameen & Mohammed Suleman Aldlemy & Mumtaz Ali & Haitham Abdulmohsin Afan & Senlin Zhu & Ahmed Mohammed Sami Al-Janabi & Nadhir Al-Ansari & Tiyasha Tiyasha &, 2020. "State-of-the Art-Powerhouse, Dam Structure, and Turbine Operation and Vibrations," Sustainability, MDPI, vol. 12(4), pages 1-40, February.
    15. Zhang, Yuning & Zhang, Yuning & Qian, Zhongdong & Ji, Bin & Wu, Yulin, 2016. "A review of microscopic interactions between cavitation bubbles and particles in silt-laden flow," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 303-318.
    16. Thapa, Biraj Singh & Thapa, Bhola & Dahlhaug, Ole Gunnar, 2012. "Current research in hydraulic turbines for handling sediments," Energy, Elsevier, vol. 47(1), pages 62-69.
    17. Messa, Gianandrea Vittorio & Mandelli, Simone & Malavasi, Stefano, 2019. "Hydro-abrasive erosion in Pelton turbine injectors: A numerical study," Renewable Energy, Elsevier, vol. 130(C), pages 474-488.
    18. Suyesh, Bhattarai & Parag, Vichare & Keshav, Dahal & Ahmed, Al Makky & Abdul-Ghani, Olabi, 2019. "Novel trends in modelling techniques of Pelton Turbine bucket for increased renewable energy production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 87-101.
    19. Thapa, Biraj Singh & Dahlhaug, Ole Gunnar & Thapa, Bhola, 2015. "Sediment erosion in hydro turbines and its effect on the flow around guide vanes of Francis turbine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1100-1113.
    20. Babu, Abhishek & Perumal, G. & Arora, H.S. & Grewal, H.S., 2021. "Enhanced slurry and cavitation erosion resistance of deep cryogenically treated thermal spray coatings for hydroturbine applications," Renewable Energy, Elsevier, vol. 180(C), pages 1044-1055.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:13:p:3875-:d:583556. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.