IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i12p3624-d577256.html
   My bibliography  Save this article

Intelligent Energy Management in a Prosumer Community Considering the Load Factor Enhancement

Author

Listed:
  • Fernando V. Cerna

    (Department of Electrical Engineering, Federal University of Roraima, Boa Vista 69310-000, Brazil)

  • Mahdi Pourakbari-Kasmaei

    (Department of Electrical Engineering and Automation, Aalto University, 02150 Espoo, Finland)

  • Luizalba S. S. Pinheiro

    (Department of Electrical Engineering, Federal University of Roraima, Boa Vista 69310-000, Brazil)

  • Ehsan Naderi

    (School of Electrical, Computer, and Biomedical Engineering, Southern Illinois University, Carbondale, IL 62901, USA)

  • Matti Lehtonen

    (Department of Electrical Engineering and Automation, Aalto University, 02150 Espoo, Finland)

  • Javier Contreras

    (School of Industrial Engineering, University of Castilla-La Mancha, 13071 Ciudad Real, Spain)

Abstract

In prosumers’ communities, the use of storage batteries (SBs) as support for photovoltaic (PV) sources combined with coordination in household appliances usage guarantees several gains. Although these technologies increase the reliability of the electricity supply, the large-scale use of home appliances in periods of lower solar radiation and low electricity tariff can impair the performance of the electrical system. The appearance of new consumption peaks can lead to disturbances. Moreover, the repetition of these events in the short term can cause rapid fatigue of the assets. To address these concerns, this research proposes a mixed-integer linear programming (MILP) model aiming at the optimal operation of the SBs and the appliance usage of each prosumer, as well as a PV plant within a community to achieve the maximum load factor (LF) increase. Constraints related to the household appliances, including the electric vehicle (EV), shared PV plant, and the SBs, are considered. Uncertainties in consumption habits are simulated using a Monte Carlo algorithm. The proposed model was solved using the CPLEX solver. The effectiveness of our proposed model is evaluated with/without the LF improvement. Results corroborate the efficient performance of the proposed tool. Financial benefits are obtained for both prosumers and the energy company.

Suggested Citation

  • Fernando V. Cerna & Mahdi Pourakbari-Kasmaei & Luizalba S. S. Pinheiro & Ehsan Naderi & Matti Lehtonen & Javier Contreras, 2021. "Intelligent Energy Management in a Prosumer Community Considering the Load Factor Enhancement," Energies, MDPI, vol. 14(12), pages 1-24, June.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:12:p:3624-:d:577256
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/12/3624/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/12/3624/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Longxi Li, 2020. "Optimal Coordination Strategies for Load Service Entity and Community Energy Systems Based on Centralized and Decentralized Approaches," Energies, MDPI, vol. 13(12), pages 1-22, June.
    2. Eunice Espe & Vidyasagar Potdar & Elizabeth Chang, 2018. "Prosumer Communities and Relationships in Smart Grids: A Literature Review, Evolution and Future Directions," Energies, MDPI, vol. 11(10), pages 1-24, September.
    3. Akhil Joseph & Patil Balachandra, 2020. "Energy Internet, the Future Electricity System: Overview, Concept, Model Structure, and Mechanism," Energies, MDPI, vol. 13(16), pages 1-26, August.
    4. Eleonora Achiluzzi & Kirushaanth Kobikrishna & Abenayan Sivabalan & Carlos Sabillon & Bala Venkatesh, 2020. "Optimal Asset Planning for Prosumers Considering Energy Storage and Photovoltaic (PV) Units: A Stochastic Approach," Energies, MDPI, vol. 13(7), pages 1-20, April.
    5. Kuruseelan S & Vaithilingam C, 2019. "Peer-to-Peer Energy Trading of a Community Connected with an AC and DC Microgrid," Energies, MDPI, vol. 12(19), pages 1-15, September.
    6. Jordi de la Hoz & Àlex Alonso & Sergio Coronas & Helena Martín & José Matas, 2020. "Impact of Different Regulatory Structures on the Management of Energy Communities," Energies, MDPI, vol. 13(11), pages 1-26, June.
    7. Incheol Shin, 2020. "Approximation Algorithm-Based Prosumer Scheduling for Microgrids," Energies, MDPI, vol. 13(21), pages 1-16, November.
    8. Zacharie De Grève & Jérémie Bottieau & David Vangulick & Aurélien Wautier & Pierre-David Dapoz & Adriano Arrigo & Jean-François Toubeau & François Vallée, 2020. "Machine Learning Techniques for Improving Self-Consumption in Renewable Energy Communities," Energies, MDPI, vol. 13(18), pages 1-17, September.
    9. Md Mamun Ur Rashid & Fabrizio Granelli & Md. Alamgir Hossain & Md. Shafiul Alam & Fahad Saleh Al-Ismail & Ashish Kumar Karmaker & Md. Mijanur Rahaman, 2020. "Development of Home Energy Management Scheme for a Smart Grid Community," Energies, MDPI, vol. 13(17), pages 1-24, August.
    10. David Toquica & Kodjo Agbossou & Roland Malhamé & Nilson Henao & Sousso Kelouwani & Alben Cardenas, 2020. "Adaptive Machine Learning for Automated Modeling of Residential Prosumer Agents," Energies, MDPI, vol. 13(9), pages 1-19, May.
    11. Arnob Ghosh & Vaneet Aggarwal, 2020. "Penalty Based Control Mechanism for Strategic Prosumers in a Distribution Network," Energies, MDPI, vol. 13(2), pages 1-14, January.
    12. Filipe Marangoni & Leandro Magatão & Lúcia Valéria Ramos de Arruda, 2020. "Demand Response Optimization Model to Energy and Power Expenses Analysis and Contract Revision," Energies, MDPI, vol. 13(11), pages 1-23, June.
    13. Rasool Bukhsh & Muhammad Umar Javed & Aisha Fatima & Nadeem Javaid & Muhammad Shafiq & Jin-Ghoo Choi, 2020. "Cost Efficient Real Time Electricity Management Services for Green Community Using Fog," Energies, MDPI, vol. 13(12), pages 1-23, June.
    14. Eva González-Romera & Mercedes Ruiz-Cortés & María-Isabel Milanés-Montero & Fermín Barrero-González & Enrique Romero-Cadaval & Rui Amaral Lopes & João Martins, 2019. "Advantages of Minimizing Energy Exchange Instead of Energy Cost in Prosumer Microgrids," Energies, MDPI, vol. 12(4), pages 1-18, February.
    15. Johannes Radl & Andreas Fleischhacker & Frida Huglen Revheim & Georg Lettner & Hans Auer, 2020. "Comparison of Profitability of PV Electricity Sharing in Renewable Energy Communities in Selected European Countries," Energies, MDPI, vol. 13(19), pages 1-24, September.
    16. Abdullah M. Alabdullatif & Enrico H. Gerding & Alvaro Perez-Diaz, 2020. "Market Design and Trading Strategies for Community Energy Markets with Storage and Renewable Supply," Energies, MDPI, vol. 13(4), pages 1-31, February.
    17. Carlos Adrian Correa-Florez & Andrea Michiorri & Georges Kariniotakis, 2019. "Comparative Analysis of Adjustable Robust Optimization Alternatives for the Participation of Aggregated Residential Prosumers in Electricity Markets," Energies, MDPI, vol. 12(6), pages 1-27, March.
    18. Xiaofeng Liu & Shijun Wang & Jiawen Sun, 2018. "Energy Management for Community Energy Network with CHP Based on Cooperative Game," Energies, MDPI, vol. 11(5), pages 1-18, April.
    19. Jing Wang & Kaitlyn Garifi & Kyri Baker & Wangda Zuo & Yingchen Zhang & Sen Huang & Draguna Vrabie, 2020. "Optimal Renewable Resource Allocation and Load Scheduling of Resilient Communities," Energies, MDPI, vol. 13(21), pages 1-29, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huangjie Gong & Dan M. Ionel, 2021. "Improving the Power Outage Resilience of Buildings with Solar PV through the Use of Battery Systems and EV Energy Storage," Energies, MDPI, vol. 14(18), pages 1-16, September.
    2. Cerna, Fernando V. & Pourakbari-Kasmaei, Mahdi & Barros, Raone G. & Naderi, Ehsan & Lehtonen, Matti & Contreras, Javier, 2023. "Optimal operating scheme of neighborhood energy storage communities to improve power grid performance in smart cities," Applied Energy, Elsevier, vol. 331(C).
    3. Mohammed Kharrich & Salah Kamel & Mohamed H. Hassan & Salah K. ElSayed & Ibrahim B. M. Taha, 2021. "An Improved Heap-Based Optimizer for Optimal Design of a Hybrid Microgrid Considering Reliability and Availability Constraints," Sustainability, MDPI, vol. 13(18), pages 1-25, September.
    4. Bartłomiej Mroczek & Paweł Pijarski, 2022. "Machine Learning in Operating of Low Voltage Future Grid," Energies, MDPI, vol. 15(15), pages 1-30, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ovidiu Ivanov & Bogdan-Constantin Neagu & Gheorghe Grigoras & Florina Scarlatache & Mihai Gavrilas, 2021. "A Metaheuristic Algorithm for Flexible Energy Storage Management in Residential Electricity Distribution Grids," Mathematics, MDPI, vol. 9(19), pages 1-17, September.
    2. Ana Ogando-Martínez & Xela García-Santiago & Saúl Díaz García & Fernando Echevarría Camarero & Gonzalo Blázquez Gil & Pablo Carrasco Ortega, 2023. "Optimization of Energy Allocation Strategies in Spanish Collective Self-Consumption Photovoltaic Systems," Sustainability, MDPI, vol. 15(12), pages 1-17, June.
    3. Castellini, Marta & Menoncin, Francesco & Moretto, Michele & Vergalli, Sergio, 2021. "Photovoltaic Smart Grids in the prosumers investment decisions: a real option model," Journal of Economic Dynamics and Control, Elsevier, vol. 126(C).
    4. Andreolli, Francesca & D'Alpaos, Chiara & Kort, Peter, 2023. "Does P2P Trading Favor Investments in PV-Battery Systems?," FEEM Working Papers 330498, Fondazione Eni Enrico Mattei (FEEM).
    5. Castellini, Marta & Di Corato, Luca & Moretto, Michele & Vergalli, Sergio, 2021. "Energy exchange among heterogeneous prosumers under price uncertainty," Energy Economics, Elsevier, vol. 104(C).
    6. Francesca Andreolli & Chiara D'Alpaos & Peter Kort, 2023. "Does P2P Trading Favor Investments in PV-Battery Systems?," Working Papers 2023.02, Fondazione Eni Enrico Mattei.
    7. Roberts Lazdins & Anna Mutule & Diana Zalostiba, 2021. "PV Energy Communities—Challenges and Barriers from a Consumer Perspective: A Literature Review," Energies, MDPI, vol. 14(16), pages 1-20, August.
    8. Rozmysław Mieński & Przemysław Urbanek & Irena Wasiak, 2021. "Using Energy Storage Inverters of Prosumer Installations for Voltage Control in Low-Voltage Distribution Networks," Energies, MDPI, vol. 14(4), pages 1-21, February.
    9. Àlex Alonso & Jordi de la Hoz & Helena Martín & Sergio Coronas & José Matas, 2021. "Individual vs. Community: Economic Assessment of Energy Management Systems under Different Regulatory Frameworks," Energies, MDPI, vol. 14(3), pages 1-27, January.
    10. Di Silvestre, Maria Luisa & Ippolito, Mariano Giuseppe & Sanseverino, Eleonora Riva & Sciumè, Giuseppe & Vasile, Antony, 2021. "Energy self-consumers and renewable energy communities in Italy: New actors of the electric power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    11. Illia Diahovchenko & Lubov Petrichenko, 2022. "Comparative Analysis of Power Distribution Systems with Individual Prosumers Owing Photovoltaic Installations and Solar Energy Communities in Terms of Profitability and Hosting Capacity," Energies, MDPI, vol. 15(23), pages 1-20, November.
    12. Tomasz Rokicki & Piotr Bórawski & Barbara Gradziuk & Piotr Gradziuk & Aldona Mrówczyńska-Kamińska & Joanna Kozak & Danuta Jolanta Guzal-Dec & Kamil Wojtczuk, 2021. "Differentiation and Changes of Household Electricity Prices in EU Countries," Energies, MDPI, vol. 14(21), pages 1-21, October.
    13. Aleksander Jakimowicz, 2022. "The Energy Transition as a Super Wicked Problem: The Energy Sector in the Era of Prosumer Capitalism," Energies, MDPI, vol. 15(23), pages 1-31, December.
    14. Bernadette Fina & Miriam Schwebler & Carolin Monsberger, 2022. "Different Technologies’ Impacts on the Economic Viability, Energy Flows and Emissions of Energy Communities," Sustainability, MDPI, vol. 14(9), pages 1-20, April.
    15. Francesca Ceglia & Elisa Marrasso & Giovanna Pallotta & Carlo Roselli & Maurizio Sasso, 2022. "The State of the Art of Smart Energy Communities: A Systematic Review of Strengths and Limits," Energies, MDPI, vol. 15(9), pages 1-28, May.
    16. Park, Sung-Won & Zhang, Zhong & Li, Furong & Son, Sung-Yong, 2021. "Peer-to-peer trading-based efficient flexibility securing mechanism to support distribution system stability," Applied Energy, Elsevier, vol. 285(C).
    17. Soheil Mohseni & Alan C. Brent & Daniel Burmester, 2020. "Community Resilience-Oriented Optimal Micro-Grid Capacity Expansion Planning: The Case of Totarabank Eco-Village, New Zealand," Energies, MDPI, vol. 13(15), pages 1-29, August.
    18. Qingle Pang & Lin Ye & Houlei Gao & Xinian Li & Yang Zheng & Chenbin He, 2021. "Penalty Electricity Price-Based Optimal Control for Distribution Networks," Energies, MDPI, vol. 14(7), pages 1-16, March.
    19. Zhou, Hou Sheng & Passey, Rob & Bruce, Anna & Sproul, Alistair B., 2021. "A case study on the behaviour of residential battery energy storage systems during network demand peaks," Renewable Energy, Elsevier, vol. 180(C), pages 712-724.
    20. Alessandro Sciullo & Gregory Winston Gilcrease & Mario Perugini & Dario Padovan & Barbara Curli & Jay Sterling Gregg & Osman Arrobbio & Erika Meynaerts & Sarah Delvaux & Lucia Polo-Alvarez & Chiara Ca, 2022. "Exploring Institutional and Socio-Economic Settings for the Development of Energy Communities in Europe," Energies, MDPI, vol. 15(4), pages 1-22, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:12:p:3624-:d:577256. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.