IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i12p3598-d576468.html
   My bibliography  Save this article

Dynamic Loads and Response of a Spar Buoy Wind Turbine with Pitch-Controlled Rotating Blades: An Experimental Study

Author

Listed:
  • Sara Russo

    (Department of Engineering, University of Campania “Luigi Vanvitelli”, Via Roma, 29, 81031 Aversa, Italy
    Inter-University National Consortium for Marine Sciences (CoNISMa), Piazzale Flaminio, 00144 Rome, Italy)

  • Pasquale Contestabile

    (Department of Engineering, University of Campania “Luigi Vanvitelli”, Via Roma, 29, 81031 Aversa, Italy
    Inter-University National Consortium for Marine Sciences (CoNISMa), Piazzale Flaminio, 00144 Rome, Italy)

  • Andrea Bardazzi

    (Department of Engineering, University of Campania “Luigi Vanvitelli”, Via Roma, 29, 81031 Aversa, Italy)

  • Elisa Leone

    (Department of Engineering for Innovation, EUMER Campus Ecotekne, University of Salento, Via Monteroni, 73100 Lecce, Italy)

  • Gregorio Iglesias

    (School of Engineering, University College Cork, College Road, T12 K8AF Cork, Ireland
    Marine Building, School of Engineering, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK)

  • Giuseppe R. Tomasicchio

    (Department of Engineering for Innovation, EUMER Campus Ecotekne, University of Salento, Via Monteroni, 73100 Lecce, Italy)

  • Diego Vicinanza

    (Department of Engineering, University of Campania “Luigi Vanvitelli”, Via Roma, 29, 81031 Aversa, Italy
    Inter-University National Consortium for Marine Sciences (CoNISMa), Piazzale Flaminio, 00144 Rome, Italy
    CNR-INM, Institute of Marine Engineering, Via di Vallerano 139, 00128 Rome, Italy)

Abstract

New large-scale laboratory data are presented on a physical model of a spar buoy wind turbine with angular motion of control surfaces implemented (pitch control). The peculiarity of this type of rotating blade represents an essential aspect when studying floating offshore wind structures. Experiments were designed specifically to compare different operational environmental conditions in terms of wave steepness and wind speed. Results discussed here were derived from an analysis of only a part of the whole dataset. Consistent with recent small-scale experiments, data clearly show that the waves contributed to most of the model motions and mooring loads. A significant nonlinear behavior for sway, roll and yaw has been detected, whereas an increase in the wave period makes the wind speed less influential for surge, heave and pitch. In general, as the steepness increases, the oscillations decrease. However, higher wind speed does not mean greater platform motions. Data also indicate a significant role of the blade rotation in the turbine thrust, nacelle dynamic forces and power in six degrees of freedom. Certain pairs of wind speed-wave steepness are particularly unfavorable, since the first harmonic of the rotor (coupled to the first wave harmonic) causes the thrust force to be larger than that in more energetic sea states. The experiments suggest that the inclusion of pitch-controlled, variable-speed blades in physical (and numerical) tests on such types of structures is crucial, highlighting the importance of pitch motion as an important design factor.

Suggested Citation

  • Sara Russo & Pasquale Contestabile & Andrea Bardazzi & Elisa Leone & Gregorio Iglesias & Giuseppe R. Tomasicchio & Diego Vicinanza, 2021. "Dynamic Loads and Response of a Spar Buoy Wind Turbine with Pitch-Controlled Rotating Blades: An Experimental Study," Energies, MDPI, vol. 14(12), pages 1-21, June.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:12:p:3598-:d:576468
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/12/3598/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/12/3598/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wen, Yi & Kamranzad, Bahareh & Lin, Pengzhi, 2021. "Assessment of long-term offshore wind energy potential in the south and southeast coasts of China based on a 55-year dataset," Energy, Elsevier, vol. 224(C).
    2. Tomasicchio, Giuseppe Roberto & D'Alessandro, Felice & Avossa, Alberto Maria & Riefolo, Luigia & Musci, Elena & Ricciardelli, Francesco & Vicinanza, Diego, 2018. "Experimental modelling of the dynamic behaviour of a spar buoy wind turbine," Renewable Energy, Elsevier, vol. 127(C), pages 412-432.
    3. Bento, Nuno & Fontes, Margarida, 2019. "Emergence of floating offshore wind energy: Technology and industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 99(C), pages 66-82.
    4. Michael Borg & Morten Walkusch Jensen & Scott Urquhart & Morten Thøtt Andersen & Jonas Bjerg Thomsen & Henrik Stiesdal, 2020. "Technical Definition of the TetraSpar Demonstrator Floating Wind Turbine Foundation," Energies, MDPI, vol. 13(18), pages 1-11, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lixun Zhu & Chao Ma & Wei Li, 2022. "A Novel Structure of Electromagnetic Lead Screw for Wave Energy Converter," Energies, MDPI, vol. 15(8), pages 1-12, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, L. & Kolios, A. & Liu, X. & Venetsanos, D. & Rui, C., 2022. "Reliability of offshore wind turbine support structures: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    2. Wang, Xinbao & Cai, Chang & Cai, Shang-Gui & Wang, Tengyuan & Wang, Zekun & Song, Juanjuan & Rong, Xiaomin & Li, Qing'an, 2023. "A review of aerodynamic and wake characteristics of floating offshore wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    3. Rezaeiha, Abdolrahim & Micallef, Daniel, 2021. "Wake interactions of two tandem floating offshore wind turbines: CFD analysis using actuator disc model," Renewable Energy, Elsevier, vol. 179(C), pages 859-876.
    4. Wang, Hao & Wang, Tongguang & Ke, Shitang & Hu, Liang & Xie, Jiaojie & Cai, Xin & Cao, Jiufa & Ren, Yuxin, 2023. "Assessing code-based design wind loads for offshore wind turbines in China against typhoons," Renewable Energy, Elsevier, vol. 212(C), pages 669-682.
    5. Jonas Bjerg Thomsen & Roger Bergua & Jason Jonkman & Amy Robertson & Nicole Mendoza & Cameron Brown & Christos Galinos & Henrik Stiesdal, 2021. "Modeling the TetraSpar Floating Offshore Wind Turbine Foundation as a Flexible Structure in OrcaFlex and OpenFAST," Energies, MDPI, vol. 14(23), pages 1-14, November.
    6. Weiss, Daniel & Nemeczek, Fabian, 2021. "A text-based monitoring tool for the legitimacy and guidance of technological innovation systems," Technology in Society, Elsevier, vol. 66(C).
    7. Papi, F. & Bianchini, A., 2022. "Technical challenges in floating offshore wind turbine upscaling: A critical analysis based on the NREL 5 MW and IEA 15 MW Reference Turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    8. Daniela Pantusa & Antonio Francone & Giuseppe Roberto Tomasicchio, 2020. "Floating Offshore Renewable Energy Farms. A Life-Cycle Cost Analysis at Brindisi, Italy," Energies, MDPI, vol. 13(22), pages 1-22, November.
    9. Ferrari, Francesco & Besio, Giovanni & Cassola, Federico & Mazzino, Andrea, 2020. "Optimized wind and wave energy resource assessment and offshore exploitability in the Mediterranean Sea," Energy, Elsevier, vol. 190(C).
    10. Li, Ming & Cao, Sunliang & Zhu, Xiaolin & Xu, Yang, 2022. "Techno-economic analysis of the transition towards the large-scale hybrid wind-tidal supported coastal zero-energy communities," Applied Energy, Elsevier, vol. 316(C).
    11. Upma Singh & Mohammad Rizwan & Hasmat Malik & Fausto Pedro García Márquez, 2022. "Wind Energy Scenario, Success and Initiatives towards Renewable Energy in India—A Review," Energies, MDPI, vol. 15(6), pages 1-39, March.
    12. Wen, Yi & Kamranzad, Bahareh & Lin, Pengzhi, 2022. "Joint exploitation potential of offshore wind and wave energy along the south and southeast coasts of China," Energy, Elsevier, vol. 249(C).
    13. Pustina, L. & Lugni, C. & Bernardini, G. & Serafini, J. & Gennaretti, M., 2020. "Control of power generated by a floating offshore wind turbine perturbed by sea waves," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    14. Torres-Rincón, Samuel & Bastidas-Arteaga, Emilio & Sánchez-Silva, Mauricio, 2021. "A flexibility-based approach for the design and management of floating offshore wind farms," Renewable Energy, Elsevier, vol. 175(C), pages 910-925.
    15. Zhenqing Liu & Qingsong Zhou & Yuangang Tu & Wei Wang & Xugang Hua, 2019. "Proposal of a Novel Semi-Submersible Floating Wind Turbine Platform Composed of Inclined Columns and Multi-Segmented Mooring Lines," Energies, MDPI, vol. 12(9), pages 1-32, May.
    16. Igliński, Bartłomiej & Pietrzak, Michał Bernard & Kiełkowska, Urszula & Skrzatek, Mateusz & Kumar, Gopalakrishnan & Piechota, Grzegorz, 2022. "The assessment of renewable energy in Poland on the background of the world renewable energy sector," Energy, Elsevier, vol. 261(PB).
    17. Meng, Haoran & Su, Hao & Guo, Jia & Qu, Timing & Lei, Liping, 2022. "Experimental investigation on the power and thrust characteristics of a wind turbine model subjected to surge and sway motions," Renewable Energy, Elsevier, vol. 181(C), pages 1325-1337.
    18. Micallef, Daniel & Rezaeiha, Abdolrahim, 2021. "Floating offshore wind turbine aerodynamics: Trends and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    19. Hokey Min & Yohannes Haile, 2021. "Examining the Role of Disruptive Innovation in Renewable Energy Businesses from a Cross National Perspective," Energies, MDPI, vol. 14(15), pages 1-19, July.
    20. Rohe, Sebastian & Chlebna, Camilla, 2021. "A spatial perspective on the legitimacy of a technological innovation system: Regional differences in onshore wind energy," Energy Policy, Elsevier, vol. 151(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:12:p:3598-:d:576468. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.