IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i12p3385-d571212.html
   My bibliography  Save this article

Swarm-Inspired Algorithms to Optimize a Nonlinear Gaussian Adaptive PID Controller

Author

Listed:
  • Erickson Diogo Pereira Puchta

    (Graduate Program in Production Engineering, Federal University of Technology-Paraná (UTFPR), Dr. Washington Subtil Chueire St. 330, Jardim Carvalho, Ponta Grossa 84017-22, Brazil
    These authors contributed equally to this work.)

  • Priscilla Bassetto

    (Graduate Program in Production Engineering, Federal University of Technology-Paraná (UTFPR), Dr. Washington Subtil Chueire St. 330, Jardim Carvalho, Ponta Grossa 84017-22, Brazil
    These authors contributed equally to this work.)

  • Lucas Henrique Biuk

    (Graduate Program in Electrical Engineering, Federal University of Technology-Paraná (UTFPR), Dr. Washington Subtil Chueire St. 330, Jardim Carvalho, Ponta Grossa 84017-22, Brazil
    These authors contributed equally to this work.)

  • Marco Antônio Itaborahy Filho

    (Graduate Program in Electrical Engineering, Federal University of Technology-Paraná (UTFPR), Dr. Washington Subtil Chueire St. 330, Jardim Carvalho, Ponta Grossa 84017-22, Brazil
    These authors contributed equally to this work.)

  • Attilio Converti

    (Department of Civil, Chemical and Environmental Engineering, University of Genoa, Via Balbi 5, 16126 Genoa, Italy
    These authors contributed equally to this work.)

  • Mauricio dos Santos Kaster

    (Graduate Program in Electrical Engineering, Federal University of Technology-Paraná (UTFPR), Dr. Washington Subtil Chueire St. 330, Jardim Carvalho, Ponta Grossa 84017-22, Brazil
    These authors contributed equally to this work.)

  • Hugo Valadares Siqueira

    (Graduate Program in Production Engineering, Federal University of Technology-Paraná (UTFPR), Dr. Washington Subtil Chueire St. 330, Jardim Carvalho, Ponta Grossa 84017-22, Brazil
    These authors contributed equally to this work.)

Abstract

This work deals with metaheuristic optimization algorithms to derive the best parameters for the Gaussian Adaptive PID controller. This controller represents a multimodal problem, where several distinct solutions can achieve similar best performances, and metaheuristics optimization algorithms can behave differently during the optimization process. Finding the correct proportionality between the parameters is an arduous task that often does not have an algebraic solution. The Gaussian functions of each control action have three parameters, resulting in a total of nine parameters to be defined. In this work, we investigate three bio-inspired optimization methods dealing with this problem: Particle Swarm Optimization (PSO), the Artificial Bee Colony (ABC) algorithm, and the Whale Optimization Algorithm (WOA). The computational results considering the Buck converter with a resistive and a nonlinear load as a case study demonstrated that the methods were capable of solving the task. The results are presented and compared, and PSO achieved the best results.

Suggested Citation

  • Erickson Diogo Pereira Puchta & Priscilla Bassetto & Lucas Henrique Biuk & Marco Antônio Itaborahy Filho & Attilio Converti & Mauricio dos Santos Kaster & Hugo Valadares Siqueira, 2021. "Swarm-Inspired Algorithms to Optimize a Nonlinear Gaussian Adaptive PID Controller," Energies, MDPI, vol. 14(12), pages 1-20, June.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:12:p:3385-:d:571212
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/12/3385/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/12/3385/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Naghmash Ali & Zhizhen Liu & Hammad Armghan & Iftikhar Ahmad & Yanjin Hou, 2021. "LCC-S-Based Integral Terminal Sliding Mode Controller for a Hybrid Energy Storage System Using a Wireless Power System," Energies, MDPI, vol. 14(6), pages 1-25, March.
    2. Niknam, Taher & Mojarrad, Hassan Doagou & Nayeripour, Majid, 2010. "A new fuzzy adaptive particle swarm optimization for non-smooth economic dispatch," Energy, Elsevier, vol. 35(4), pages 1764-1778.
    3. Niknam, Taher, 2010. "A new fuzzy adaptive hybrid particle swarm optimization algorithm for non-linear, non-smooth and non-convex economic dispatch problem," Applied Energy, Elsevier, vol. 87(1), pages 327-339, January.
    4. Christos Yfoulis & Simira Papadopoulou & Spyridon Voutetakis, 2020. "Robust Linear Control of Boost and Buck-Boost DC-DC Converters in Micro-Grids with Constant Power Loads," Energies, MDPI, vol. 13(18), pages 1-21, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pengcheng Geng & Xiangsong Kong & Changqing Shi & Hang Liu & Jiabin Liu, 2022. "IK-SPSA-Based Performance Optimization Strategy for Steam Generator Level Control System of Nuclear Power Plant," Energies, MDPI, vol. 15(19), pages 1-22, October.
    2. Marco Antonio Itaborahy Filho & Erickson Puchta & Marcella S. R. Martins & Thiago Antonini Alves & Yara de Souza Tadano & Fernanda Cristina Corrêa & Sergio Luiz Stevan & Hugo Valadares Siqueira & Maur, 2022. "Bio-Inspired Optimization Algorithms Applied to the GAPID Control of a Buck Converter," Energies, MDPI, vol. 15(18), pages 1-22, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Glotić, Arnel & Zamuda, Aleš, 2015. "Short-term combined economic and emission hydrothermal optimization by surrogate differential evolution," Applied Energy, Elsevier, vol. 141(C), pages 42-56.
    2. Jianzhong Xu & Fu Yan & Kumchol Yun & Lifei Su & Fengshu Li & Jun Guan, 2019. "Noninferior Solution Grey Wolf Optimizer with an Independent Local Search Mechanism for Solving Economic Load Dispatch Problems," Energies, MDPI, vol. 12(12), pages 1-26, June.
    3. Vo, Dieu Ngoc & Ongsakul, Weerakorn, 2012. "Economic dispatch with multiple fuel types by enhanced augmented Lagrange Hopfield network," Applied Energy, Elsevier, vol. 91(1), pages 281-289.
    4. Niknam, Taher & Firouzi, Bahman Bahmani & Ostadi, Amir, 2010. "A new fuzzy adaptive particle swarm optimization for daily Volt/Var control in distribution networks considering distributed generators," Applied Energy, Elsevier, vol. 87(6), pages 1919-1928, June.
    5. Alsumait, J.S. & Sykulski, J.K. & Al-Othman, A.K., 2010. "A hybrid GA-PS-SQP method to solve power system valve-point economic dispatch problems," Applied Energy, Elsevier, vol. 87(5), pages 1773-1781, May.
    6. Özyön, Serdar & Temurtaş, Hasan & Durmuş, Burhanettin & Kuvat, Gültekin, 2012. "Charged system search algorithm for emission constrained economic power dispatch problem," Energy, Elsevier, vol. 46(1), pages 420-430.
    7. Yacine Labbi & Djilani Ben Attous, 2017. "A Hybrid Big Bang–Big Crunch optimization algorithm for solving the different economic load dispatch problems," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(2), pages 275-286, June.
    8. Wang, Jun & Cao, Junxing & Yuan, Shan & Cheng, Ming, 2021. "Short-term forecasting of natural gas prices by using a novel hybrid method based on a combination of the CEEMDAN-SE-and the PSO-ALS-optimized GRU network," Energy, Elsevier, vol. 233(C).
    9. Bornapour, Mosayeb & Hooshmand, Rahmat-Allah & Parastegari, Moein, 2019. "An efficient scenario-based stochastic programming method for optimal scheduling of CHP-PEMFC, WT, PV and hydrogen storage units in micro grids," Renewable Energy, Elsevier, vol. 130(C), pages 1049-1066.
    10. Guojiang Xiong & Jing Zhang & Xufeng Yuan & Dongyuan Shi & Yu He & Yao Yao & Gonggui Chen, 2018. "A Novel Method for Economic Dispatch with Across Neighborhood Search: A Case Study in a Provincial Power Grid, China," Complexity, Hindawi, vol. 2018, pages 1-18, November.
    11. Jiangtao Yu & Chang-Hwan Kim & Abdul Wadood & Tahir Khurshiad & Sang-Bong Rhee, 2018. "A Novel Multi-Population Based Chaotic JAYA Algorithm with Application in Solving Economic Load Dispatch Problems," Energies, MDPI, vol. 11(8), pages 1-25, July.
    12. Yu-Shan Cheng & Yi-Hua Liu & Holger C. Hesse & Maik Naumann & Cong Nam Truong & Andreas Jossen, 2018. "A PSO-Optimized Fuzzy Logic Control-Based Charging Method for Individual Household Battery Storage Systems within a Community," Energies, MDPI, vol. 11(2), pages 1-18, February.
    13. Fraga, Eric S. & Yang, Lingjian & Papageorgiou, Lazaros G., 2012. "On the modelling of valve point loadings for power electricity dispatch," Applied Energy, Elsevier, vol. 91(1), pages 301-303.
    14. Ara, A. Lashkar & Kazemi, A. & Niaki, S.A. Nabavi, 2011. "Optimal location of Hybrid Flow Controller considering modified steady-state model," Applied Energy, Elsevier, vol. 88(5), pages 1578-1585, May.
    15. Niknam, Taher & Mojarrad, Hasan Doagou & Meymand, Hamed Zeinoddini & Firouzi, Bahman Bahmani, 2011. "A new honey bee mating optimization algorithm for non-smooth economic dispatch," Energy, Elsevier, vol. 36(2), pages 896-908.
    16. Roche, Robin & Idoumghar, Lhassane & Suryanarayanan, Siddharth & Daggag, Mounir & Solacolu, Christian-Anghel & Miraoui, Abdellatif, 2013. "A flexible and efficient multi-agent gas turbine power plant energy management system with economic and environmental constraints," Applied Energy, Elsevier, vol. 101(C), pages 644-654.
    17. Mellouk, Lamyae & Ghazi, M. & Aaroud, A. & Boulmalf, M. & Benhaddou, D. & Zine-Dine, K., 2019. "Design and energy management optimization for hybrid renewable energy system- case study: Laayoune region," Renewable Energy, Elsevier, vol. 139(C), pages 621-634.
    18. Abdelaziz, A.Y. & Ali, E.S. & Abd Elazim, S.M., 2016. "Implementation of flower pollination algorithm for solving economic load dispatch and combined economic emission dispatch problems in power systems," Energy, Elsevier, vol. 101(C), pages 506-518.
    19. Ebrahim Farjah & Mosayeb Bornapour & Taher Niknam & Bahman Bahmanifirouzi, 2012. "Placement of Combined Heat, Power and Hydrogen Production Fuel Cell Power Plants in a Distribution Network," Energies, MDPI, vol. 5(3), pages 1-25, March.
    20. Dong, Lianxin & Fan, Shuai & Wang, Zhihua & Xiao, Jucheng & Zhou, Huan & Li, Zuyi & He, Guangyu, 2021. "An adaptive decentralized economic dispatch method for virtual power plant," Applied Energy, Elsevier, vol. 300(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:12:p:3385-:d:571212. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.