IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2020i1p104-d469141.html
   My bibliography  Save this article

Enhanced Quadratic V/f-Based Induction Motor Control of Solar Water Pumping System

Author

Listed:
  • Neama Yussif

    (Department of Energy Resources Engineering, Egypt-Japan University of Science and Technology, Alexandria 21934, Egypt
    Department of Electrical Engineering, Aswan University, Aswan 81542, Egypt)

  • Omar H. Sabry

    (Department of Electrical Engineering, Alexandria University, Alexandria 21934, Egypt)

  • Ayman S. Abdel-Khalik

    (Department of Electrical Engineering, Alexandria University, Alexandria 21934, Egypt)

  • Shehab Ahmed

    (CEMSE Division, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia)

  • Abdelfatah M. Mohamed

    (Department of Mechatronics and Robotics Engineering, Egypt-Japan University of Science and Technology, Alexandria 21934, Egypt
    Department of Electrical Engineering, Assiut University, Assiut 71516, Egypt)

Abstract

In rural and remote areas, solar photovoltaic energy (PV) water pumping systems (SPWPSs) are being favored over diesel-powered water pumping due to environmental and economic considerations. PV is a clean source of electric energy offering low operational and maintenance cost. However, the direct-coupled SPWPS requires inventive solutions to improve the system’s efficiency under solar power variations while producing the required amount of pumped water concurrently. This paper introduces a new quadratic V/f (Q V/f) control method to drive an induction motor powered directly from a solar PV source using a two-stage power converter without storage batteries. Conventional controllers usually employ linear V/f control, where the reference motor speed is derived from the PV input power and the dc-link voltage error using a simple proportional–integral (PI) controller. The proposed Q V/f-based system is compared with the conventional linear V/f control using a simulation case study under different operating conditions. The proposed controller expectedly enhances the system output power and efficiency, particularly under low levels of solar irradiance. Some alternative controllers rather than the simple PI controller are also investigated in an attempt to improve the system dynamics as well as the water flow output. An experimental prototype system is used to validate the proposed Q V/f under diverse operating conditions.

Suggested Citation

  • Neama Yussif & Omar H. Sabry & Ayman S. Abdel-Khalik & Shehab Ahmed & Abdelfatah M. Mohamed, 2020. "Enhanced Quadratic V/f-Based Induction Motor Control of Solar Water Pumping System," Energies, MDPI, vol. 14(1), pages 1-20, December.
  • Handle: RePEc:gam:jeners:v:14:y:2020:i:1:p:104-:d:469141
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/1/104/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/1/104/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shahbaz, Muhammad & Raghutla, Chandrashekar & Chittedi, Krishna Reddy & Jiao, Zhilun & Vo, Xuan Vinh, 2020. "The effect of renewable energy consumption on economic growth: Evidence from the renewable energy country attractive index," Energy, Elsevier, vol. 207(C).
    2. Sontake, Vimal Chand & Kalamkar, Vilas R., 2016. "Solar photovoltaic water pumping system - A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1038-1067.
    3. Alsofyani, Ibrahim M. & Idris, N.R.N., 2013. "A review on sensorless techniques for sustainable reliablity and efficient variable frequency drives of induction motors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 111-121.
    4. Periasamy, Packiam & Jain, N.K. & Singh, I.P., 2015. "A review on development of photovoltaic water pumping system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 918-925.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sung-An Kim & Kyung-Pyo Hong, 2021. "Analysis and Experimental Verification of a Variable Speed Turbo Air Centrifugal Compressor System for Energy Saving," Energies, MDPI, vol. 14(4), pages 1-11, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Islam, Md. Rabiul & Sarker, Pejush Chandra & Ghosh, Subarto Kumar, 2017. "Prospect and advancement of solar irrigation in Bangladesh: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 406-422.
    2. Renzo Seminario-Córdova, 2023. "Latin America towards Sustainability through Renewable Energies: A Systematic Review," Energies, MDPI, vol. 16(21), pages 1-22, November.
    3. Hannan, M.A. & Ali, Jamal A. & Mohamed, Azah & Hussain, Aini, 2018. "Optimization techniques to enhance the performance of induction motor drives: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1611-1626.
    4. Lee, Chien-Chiang & Wang, Fuhao & Chang, Yu-Fang, 2023. "Does green finance promote renewable energy? Evidence from China," Resources Policy, Elsevier, vol. 82(C).
    5. Przemysław Średziński & Martyna Świętochowska & Kamil Świętochowski & Joanna Gwoździej-Mazur, 2022. "Analysis of the Use of the PV Installation in the Power Supply of the Water Pumping Station," Energies, MDPI, vol. 15(24), pages 1-13, December.
    6. Puertas, Rosa & Guaita-Martinez, José M. & Carracedo, Patricia & Ribeiro-Soriano, Domingo, 2022. "Analysis of European environmental policies: Improving decision making through eco-efficiency," Technology in Society, Elsevier, vol. 70(C).
    7. Wei Li & Gengyin Li & Kai Ni & Yihua Hu & Xinhua Li, 2017. "A Hybrid Fault-Tolerant Strategy for Severe Sensor Failure Scenarios in Late-Stage Offshore DFIG-WT," Energies, MDPI, vol. 11(1), pages 1-23, December.
    8. Vitor Fernão Pires & Daniel Foito & Armando Cordeiro & Miguel Chaves & Armando J. Pires, 2022. "PV Generator-Fed Water Pumping System Based on a SRM with a Multilevel Fault-Tolerant Converter," Energies, MDPI, vol. 15(3), pages 1-19, January.
    9. Trinh, Hai Hong & Sharma, Gagan Deep & Tiwari, Aviral Kumar & Vo, Diem Thi Hong, 2022. "Examining the heterogeneity of financial development in the energy-environment nexus in the era of climate change: Novel evidence around the world," Energy Economics, Elsevier, vol. 116(C).
    10. Aniqa Arslan & Arslan Qayyum & Mosab I. Tabash & Kiran Nair & Muhammad AsadUllah & Linda Nalini Daniel, 2023. "The Impact of Economic Complexity, Usage of Energy, Tourism, and Economic Growth on Carbon Emissions: Empirical Evidence of 102 Countries," International Journal of Energy Economics and Policy, Econjournals, vol. 13(5), pages 315-324, September.
    11. Wu, Zihao & Gao, Jun & Xu, Hui & Shi, Guanqun & Zaidan, Amal Mousa & Ageli, Mohammed Moosa, 2023. "Visualizing symmetric and asymmetric settings in MMQR for natural resources extraction and economic performance: A COVID-19 perspective," Resources Policy, Elsevier, vol. 85(PB).
    12. Zhongye Sun & Xin Zhang & Yifei Gao, 2023. "The Impact of Financial Development on Renewable Energy Consumption: A Multidimensional Analysis Based on Global Panel Data," IJERPH, MDPI, vol. 20(4), pages 1-20, February.
    13. Ahmed, Eihab E.E. & Demirci, Alpaslan, 2022. "Multi-stage and multi-objective optimization for optimal sizing of stand-alone photovoltaic water pumping systems," Energy, Elsevier, vol. 252(C).
    14. Nashwa Mostafa Ali Mohamed & Karima Mohamed Magdy Kamal & Jawaher Binsuwadan, 2024. "The Adoption of Renewable Energy Technologies by Oil-Producing Countries: An Inevitable Outcome at a Time of Global Challenges and Demand for Sustainable Development," Sustainability, MDPI, vol. 16(8), pages 1-21, April.
    15. Sutikno, Tole & Idris, Nik Rumzi Nik & Jidin, Auzani, 2014. "A review of direct torque control of induction motors for sustainable reliability and energy efficient drives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 548-558.
    16. Morais, F.J.F. & Carrelhas, A.A.D. & Gato, L.M.C., 2023. "Biplane-rotor Wells turbine: The influence of solidity, presence of guide vanes and comparison with other configurations," Energy, Elsevier, vol. 276(C).
    17. Zhien, Chai Yik & Al-attab, Khaled Ali, 2022. "Design optimization of trio concept combustor geometry for low-grade biomass producer gas combustion," Energy, Elsevier, vol. 238(PA).
    18. Fotio, Hervé Kaffo & Poumie, Boker & Baida, Louise Angèle & Nguena, Christian Lambert & Adams, Samuel, 2022. "A new look at the growth-renewable energy nexus: Evidence from a sectoral analysis in Sub-Saharan Africa," Structural Change and Economic Dynamics, Elsevier, vol. 62(C), pages 61-71.
    19. Filimonova Irina Viktorovna & Nemov Vasily Yurievich & Provornaya Irina Viktorovna & Ozhogova Lyubov Mikhailovna, 2021. "Impact of Renewable Energy Sources Consumption on Economic Growth in Europe and Asia-Pacific Region," International Journal of Energy Economics and Policy, Econjournals, vol. 11(6), pages 270-278.
    20. Kuang, Hewu & Liang, Yiyan & Zhao, Wenjia & Cai, Jiahong, 2023. "Impact of natural resources and technology on economic development and sustainable environment – Analysis of resources-energy-growth-environment linkages in BRICS," Resources Policy, Elsevier, vol. 85(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2020:i:1:p:104-:d:469141. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.