IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i9p2400-d356709.html
   My bibliography  Save this article

Wave Exciting Force Maximization of Truncated Cylinders in a Linear Array

Author

Listed:
  • Constantine Michailides

    (Department of Civil Engineering and Geomatics, Cyprus University of Technology, Limassol 3036, Cyprus)

  • Eva Loukogeorgaki

    (Civil Engineering Department, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece)

  • Ioannis K. Chatjigeorgiou

    (School of Naval Architecture and Marine Engineering, National Technical University of Athens, 15780 Athens, Greece)

Abstract

This study focuses on the determination of optimum layout configurations for a linear array of identical mutually interacting truncated cylinders. Optimum configurations correspond to those that maximize either the total heave exciting force acting on all cylinders of the array or the heave exciting force applied on pairs of cylinders within the array. For achieving this goal, we developed and applied an efficient optimization numerical process (ONP), where a robust hydrodynamic numerical model, capable of solving the diffraction problem of the examined multi-body arrangement in the frequency domain, was appropriately coupled with a genetic algorithm solver in an integrated computational environment. Initially, the efficiency of the ONP is demonstrated by comparing results with those of other investigations that resulted from the deployment of classical optimization methods. Then, ONP is applied for a linear array of nine cylinders for determining the optimum layout configurations under the action of the head and perpendicular to the array waves, and for different maximum allowable array lengths. The resulting optimum configurations correspond to a random positioning of the cylinders within the array. Nevertheless, they are characterized by the formation of clusters of closely-positioned cylinders, which induce positive hydrodynamic interactions in terms of maximizing the exciting forces.

Suggested Citation

  • Constantine Michailides & Eva Loukogeorgaki & Ioannis K. Chatjigeorgiou, 2020. "Wave Exciting Force Maximization of Truncated Cylinders in a Linear Array," Energies, MDPI, vol. 13(9), pages 1-19, May.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:9:p:2400-:d:356709
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/9/2400/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/9/2400/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pau Mercadé Ruiz & Vincenzo Nava & Mathew B. R. Topper & Pablo Ruiz Minguela & Francesco Ferri & Jens Peter Kofoed, 2017. "Layout Optimisation of Wave Energy Converter Arrays," Energies, MDPI, vol. 10(9), pages 1-17, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaohui Zeng & Qi Wang & Yuanshun Kang & Fajun Yu, 2022. "A Novel Type of Wave Energy Converter with Five Degrees of Freedom and Preliminary Investigations on Power-Generating Capacity," Energies, MDPI, vol. 15(9), pages 1-20, April.
    2. Garcia-Teruel, A. & Forehand, D.I.M., 2021. "A review of geometry optimisation of wave energy converters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    3. Neshat, Mehdi & Mirjalili, Seyedali & Sergiienko, Nataliia Y. & Esmaeilzadeh, Soheil & Amini, Erfan & Heydari, Azim & Garcia, Davide Astiaso, 2022. "Layout optimisation of offshore wave energy converters using a novel multi-swarm cooperative algorithm with backtracking strategy: A case study from coasts of Australia," Energy, Elsevier, vol. 239(PE).
    4. Alireza Shadmani & Mohammad Reza Nikoo & Riyadh I. Al-Raoush & Nasrin Alamdari & Amir H. Gandomi, 2022. "The Optimal Configuration of Wave Energy Conversions Respective to the Nearshore Wave Energy Potential," Energies, MDPI, vol. 15(20), pages 1-29, October.
    5. Soutullo, S. & Giancola, E. & Heras, M.R., 2018. "Dynamic energy assessment to analyze different refurbishment strategies of existing dwellings placed in Madrid," Energy, Elsevier, vol. 152(C), pages 1011-1023.
    6. Hong-Wei Fang & Yu-Zhu Feng & Guo-Ping Li, 2018. "Optimization of Wave Energy Converter Arrays by an Improved Differential Evolution Algorithm," Energies, MDPI, vol. 11(12), pages 1-19, December.
    7. Loukogeorgaki, Eva & Michailides, Constantine & Lavidas, George & Chatjigeorgiou, Ioannis K., 2021. "Layout optimization of heaving Wave Energy Converters linear arrays in front of a vertical wall," Renewable Energy, Elsevier, vol. 179(C), pages 189-203.
    8. Theocharis, Dimitrios & Rodrigues, Vasco Sanchez & Pettit, Stephen & Haider, Jane, 2019. "Feasibility of the Northern Sea Route: The role of distance, fuel prices, ice breaking fees and ship size for the product tanker market," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 129(C), pages 111-135.
    9. Topper, Mathew B.R. & Olson, Sterling S. & Roberts, Jesse D., 2021. "On the benefits of negative hydrodynamic interactions in small tidal energy arrays," Applied Energy, Elsevier, vol. 297(C).
    10. Lee, Rachel & Homan, Samuel & Mac Dowell, Niall & Brown, Solomon, 2019. "A closed-loop analysis of grid scale battery systems providing frequency response and reserve services in a variable inertia grid," Applied Energy, Elsevier, vol. 236(C), pages 961-972.
    11. Philip Balitsky & Gael Verao Fernandez & Vasiliki Stratigaki & Peter Troch, 2018. "Assessment of the Power Output of a Two-Array Clustered WEC Farm Using a BEM Solver Coupling and a Wave-Propagation Model," Energies, MDPI, vol. 11(11), pages 1-23, October.
    12. Topper, Mathew B.R. & Nava, Vincenzo & Collin, Adam J. & Bould, David & Ferri, Francesco & Olson, Sterling S. & Dallman, Ann R. & Roberts, Jesse D. & Ruiz-Minguela, Pablo & Jeffrey, Henry F., 2019. "Reducing variability in the cost of energy of ocean energy arrays," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 263-279.
    13. Yang, Bo & Wu, Shaocong & Zhang, Hao & Liu, Bingqiang & Shu, Hongchun & Shan, Jieshan & Ren, Yaxing & Yao, Wei, 2022. "Wave energy converter array layout optimization: A critical and comprehensive overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    14. Faraggiana, E. & Chapman, J.C. & Williams, A.J. & Whitlam, C. & Masters, I., 2022. "Investigation of new layout design concepts of an array-on-device WaveSub device," Renewable Energy, Elsevier, vol. 190(C), pages 501-523.
    15. Smith, Kate & Liu, Shuming & Liu, Ying & Guo, Shengjie, 2018. "Can China reduce energy for water? A review of energy for urban water supply and wastewater treatment and suggestions for change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 41-58.
    16. Kopatz, Michael & Wagner, Oliver & Drissen, Isabel & Wiegand, Julia & Theuer, Laura, 2017. "Guthabenzahlung für Strom: Studie über den Breiteneinsatz von Prepaidzählern," Wuppertal Reports 11, Wuppertal Institute for Climate, Environment and Energy.
    17. Guo, Bingyong & Ringwood, John V., 2021. "Geometric optimisation of wave energy conversion devices: A survey," Applied Energy, Elsevier, vol. 297(C).
    18. Teixeira-Duarte, Felipe & Clemente, Daniel & Giannini, Gianmaria & Rosa-Santos, Paulo & Taveira-Pinto, Francisco, 2022. "Review on layout optimization strategies of offshore parks for wave energy converters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    19. Philip Balitsky & Nicolas Quartier & Gael Verao Fernandez & Vasiliki Stratigaki & Peter Troch, 2018. "Analyzing the Near-Field Effects and the Power Production of an Array of Heaving Cylindrical WECs and OSWECs Using a Coupled Hydrodynamic-PTO Model," Energies, MDPI, vol. 11(12), pages 1-32, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:9:p:2400-:d:356709. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.