IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i7p1851-d343916.html
   My bibliography  Save this article

Examination of EV Abilities to Provide Vehicle-to-Home Service in Low Voltage Installation

Author

Listed:
  • Paweł Kelm

    (Institute of Electrical Power Engineering, Lodz University of Technology, 90-924 Łódź, Poland)

  • Rozmysław Mieński

    (Institute of Electrical Power Engineering, Lodz University of Technology, 90-924 Łódź, Poland)

  • Irena Wasiak

    (Institute of Electrical Power Engineering, Lodz University of Technology, 90-924 Łódź, Poland)

  • Katarzyna Wojciechowska

    (Institute of Electrical Power Engineering, Lodz University of Technology, 90-924 Łódź, Poland)

Abstract

This paper deals with the application of an electric vehicle (EV) motor inverter and its batteries as an energy storage device supporting the operation of home electrical installation. This additional functionality of EV is called a Vehicle-to-Home (V2H) service. Two kind of services are considered: a peak shaving and an emergency power supply. The simulation model developed in the PSCAD program is presented. It allows for the examination of the EV battery control and operation during EV driving and parking. Additionally, it allows an evaluation of the availability of home installation for the V2H service. Control algorithms enabling the implementation of discussed work options are presented. Results of simulations are presented illustrating the EV control and operation in different operational modes.

Suggested Citation

  • Paweł Kelm & Rozmysław Mieński & Irena Wasiak & Katarzyna Wojciechowska, 2020. "Examination of EV Abilities to Provide Vehicle-to-Home Service in Low Voltage Installation," Energies, MDPI, vol. 13(7), pages 1-14, April.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:7:p:1851-:d:343916
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/7/1851/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/7/1851/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jessica Robinson & Gary Brase & Wendy Griswold & Chad Jackson & Larry Erickson, 2014. "Business Models for Solar Powered Charging Stations to Develop Infrastructure for Electric Vehicles," Sustainability, MDPI, vol. 6(10), pages 1-30, October.
    2. Antonio Colmenar-Santos & Carlos De Palacio & David Borge-Diez & Oscar Monzón-Alejandro, 2014. "Planning Minimum Interurban Fast Charging Infrastructure for Electric Vehicles: Methodology and Application to Spain," Energies, MDPI, vol. 7(3), pages 1-23, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fedorczak-Cisak, Małgorzata & Radziszewska-Zielina, Elżbieta & Nowak-Ocłoń, Marzena & Biskupski, Jacek & Jastrzębski, Paweł & Kotowicz, Anna & Varbanov, Petar Sabev & Klemeš, Jiří Jaromír, 2023. "A concept to maximise energy self-sufficiency of the housing stock in central Europe based on renewable resources and efficiency improvement," Energy, Elsevier, vol. 278(C).
    2. Fan, Dongming & Ren, Yi & Feng, Qiang & Liu, Yiliu & Wang, Zili & Lin, Jing, 2021. "Restoration of smart grids: Current status, challenges, and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nunes, Pedro & Figueiredo, Raquel & Brito, Miguel C., 2016. "The use of parking lots to solar-charge electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 679-693.
    2. Colmenar-Santos, Antonio & Linares-Mena, Ana-Rosa & Borge-Diez, David & Quinto-Alemany, Carlos-Domingo, 2017. "Impact assessment of electric vehicles on islands grids: A case study for Tenerife (Spain)," Energy, Elsevier, vol. 120(C), pages 385-396.
    3. Secinaro, Silvana & Calandra, Davide & Lanzalonga, Federico & Ferraris, Alberto, 2022. "Electric vehicles’ consumer behaviours: Mapping the field and providing a research agenda," Journal of Business Research, Elsevier, vol. 150(C), pages 399-416.
    4. Colmenar-Santos, A. & de Palacio-Rodriguez, Carlos & Rosales-Asensio, Enrique & Borge-Diez, David, 2017. "Estimating the benefits of vehicle-to-home in islands: The case of the Canary Islands," Energy, Elsevier, vol. 134(C), pages 311-322.
    5. Jon Williamsson, 2022. "EV Charging on Ferries and in Terminals—A Business Model Perspective," Energies, MDPI, vol. 15(18), pages 1-14, September.
    6. Pablo Tamay & Esteban Inga, 2022. "Charging Infrastructure for Electric Vehicles Considering Their Integration into the Smart Grid," Sustainability, MDPI, vol. 14(14), pages 1-21, July.
    7. Nadia Palmieri & Roberto Tomasone & Carla Cedrola & Daniele Puri & Mauro Pagano, 2023. "Factors Affecting Disabled Consumer Preferences for an Electric Vehicle for Rural Mobility: An Italian Experimental Study," Sustainability, MDPI, vol. 15(6), pages 1-16, March.
    8. Ruchita, 2023. "Identification of potential barriers of EVsCI using EFA," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(3), pages 896-908, July.
    9. Guevara, C. Angelo & Figueroa, Esteban & Munizaga, Marcela A., 2021. "Paving the road for electric vehicles: Lessons from a randomized experiment in an introduction stage market," Transportation Research Part A: Policy and Practice, Elsevier, vol. 153(C), pages 326-340.
    10. Judit Oláh & Nicodemus Kitukutha & Hossam Haddad & Miklós Pakurár & Domicián Máté & József Popp, 2018. "Achieving Sustainable E-Commerce in Environmental, Social and Economic Dimensions by Taking Possible Trade-Offs," Sustainability, MDPI, vol. 11(1), pages 1-22, December.
    11. Shoufeng Ji & Qi Sun, 2017. "Low-Carbon Planning and Design in B&R Logistics Service: A Case Study of an E-Commerce Big Data Platform in China," Sustainability, MDPI, vol. 9(11), pages 1-27, November.
    12. Campíñez-Romero, Severo & Colmenar-Santos, Antonio & Pérez-Molina, Clara & Mur-Pérez, Francisco, 2018. "A hydrogen refuelling stations infrastructure deployment for cities supported on fuel cell taxi roll-out," Energy, Elsevier, vol. 148(C), pages 1018-1031.
    13. Mateusz Lewandowski, 2016. "Designing the Business Models for Circular Economy—Towards the Conceptual Framework," Sustainability, MDPI, vol. 8(1), pages 1-28, January.
    14. Manríquez, Francisco & Sauma, Enzo & Aguado, José & de la Torre, Sebastián & Contreras, Javier, 2020. "The impact of electric vehicle charging schemes in power system expansion planning," Applied Energy, Elsevier, vol. 262(C).
    15. Tian Wu & Bohan Zeng & Yali He & Xin Tian & Xunmin Ou, 2017. "Sustainable Governance for the Opened Electric Vehicle Charging and Upgraded Facilities Market," Sustainability, MDPI, vol. 9(11), pages 1-22, November.
    16. Chunlin Guo & Jingjing Yang & Lin Yang, 2018. "Planning of Electric Vehicle Charging Infrastructure for Urban Areas with Tight Land Supply," Energies, MDPI, vol. 11(9), pages 1-17, September.
    17. Yanni Liang & Xingping Zhang & Jian Xie & Wenfeng Liu, 2017. "An Optimal Operation Model and Ordered Charging/Discharging Strategy for Battery Swapping Stations," Sustainability, MDPI, vol. 9(5), pages 1-18, April.
    18. George Xydis & Evanthia Nanaki, 2015. "Wind Energy Based Electric Vehicle Charging Stations Sitting. A GIS/Wind Resource Assessment Approach," Challenges, MDPI, vol. 6(2), pages 1-13, November.
    19. Abdulsalam S. Alghamdi & AbuBakr S. Bahaj & Yue Wu, 2017. "Assessment of Large Scale Photovoltaic Power Generation from Carport Canopies," Energies, MDPI, vol. 10(5), pages 1-22, May.
    20. Ivan K. W. Lai & Yide Liu & Xinbo Sun & Hao Zhang & Weiwei Xu, 2015. "Factors Influencing the Behavioural Intention towards Full Electric Vehicles: An Empirical Study in Macau," Sustainability, MDPI, vol. 7(9), pages 1-22, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:7:p:1851-:d:343916. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.