IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i6p1381-d333194.html
   My bibliography  Save this article

Effect of Sky Discretization for Shading Device Calculation on Building Energy Performance Simulations

Author

Listed:
  • Ismael R. Maestre

    (Escuela Politécnica Superior de Algeciras, University of Cadiz, 11202 Cadiz, Spain)

  • Juan Luis Foncubierta Blázquez

    (Escuela Politécnica Superior de Algeciras, University of Cadiz, 11202 Cadiz, Spain)

  • Francisco Javier González Gallero

    (Escuela Politécnica Superior de Algeciras, University of Cadiz, 11202 Cadiz, Spain)

  • J. Daniel Mena Baladés

    (Escuela Politécnica Superior de Algeciras, University of Cadiz, 11202 Cadiz, Spain)

Abstract

The calculation of sunlit surfaces in a building has always been a relevant aspect in building energy simulation programs. Due to the high computational cost, some programs use algorithms for shading calculation for certain solar positions after discretization of hemispherical sky. The influence of the level of discretization on the estimation of incident direct radiation on building surfaces, as well as on the required computational times, are studied in this work. The direct solar energy on a window for a year, with simulation time steps of five minutes, has been simulated by using an algorithm based on Projection and Clipping Methods. A total of 6144 simulations have been carried out, varying window sizes, window orientations, typologies of shading devices, latitudes and discretization levels of the hemispherical sky. In terms of annual incident solar energy, the results show that maximum error values are about 5% for a low level of angular discretization. Errors up to 22% in hourly incident solar energy have been estimated for some of the configurations analysed. Furthermore, a great number of configurations show errors of shading factor on a window of up to 30%, which could be most relevant in studies of natural lighting. The study also shows that the improvement achieved by the most accurate discretization level implies an increase in computational cost of about 30 times.

Suggested Citation

  • Ismael R. Maestre & Juan Luis Foncubierta Blázquez & Francisco Javier González Gallero & J. Daniel Mena Baladés, 2020. "Effect of Sky Discretization for Shading Device Calculation on Building Energy Performance Simulations," Energies, MDPI, vol. 13(6), pages 1-14, March.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:6:p:1381-:d:333194
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/6/1381/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/6/1381/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kirimtat, Ayca & Koyunbaba, Basak Kundakci & Chatzikonstantinou, Ioannis & Sariyildiz, Sevil, 2016. "Review of simulation modeling for shading devices in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 23-49.
    2. Ahmed Abdel-Ghany & Ibrahim Al-Helal & Fahad Alkoaik & Abdullah Alsadon & Mohamed Shady & Abdullah Ibrahim, 2019. "Predicting the Cooling Potential of Different Shading Methods for Greenhouses in Arid Regions," Energies, MDPI, vol. 12(24), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Simeng Li & Yanqiu Cui & Nerija Banaitienė & Chunlu Liu & Mark B. Luther, 2021. "Sensitivity Analysis for Carbon Emissions of Prefabricated Residential Buildings with Window Design Elements," Energies, MDPI, vol. 14(19), pages 1-25, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cho, Hyun Mi & Yang, Sungwoong & Wi, Seunghwan & Chang, Seong Jin & Kim, Sumin, 2020. "Hygrothermal and energy retrofit planning of masonry façade historic building used as museum and office: A cultural properties case study," Energy, Elsevier, vol. 201(C).
    2. Sara Brito-Coimbra & Daniel Aelenei & Maria Gloria Gomes & Antonio Moret Rodrigues, 2021. "Building Façade Retrofit with Solar Passive Technologies: A Literature Review," Energies, MDPI, vol. 14(6), pages 1-18, March.
    3. Hassan Bazazzadeh & Barbara Świt-Jankowska & Nasim Fazeli & Adam Nadolny & Behnaz Safar ali najar & Seyedeh sara Hashemi safaei & Mohammadjavad Mahdavinejad, 2021. "Efficient Shading Device as an Important Part of Daylightophil Architecture; a Designerly Framework of High-Performance Architecture for an Office Building in Tehran," Energies, MDPI, vol. 14(24), pages 1-26, December.
    4. Carmen María Calama-González & Rafael Suárez & Ángel Luis León-Rodríguez, 2018. "Thermal and Lighting Consumption Savings in Classrooms Retrofitted with Shading Devices in a Hot Climate," Energies, MDPI, vol. 11(10), pages 1-17, October.
    5. Noor Muhammad Abd Rahman & Lim Chin Haw & Ahmad Fazlizan, 2021. "A Literature Review of Naturally Ventilated Public Hospital Wards in Tropical Climate Countries for Thermal Comfort and Energy Saving Improvements," Energies, MDPI, vol. 14(2), pages 1-22, January.
    6. Cansu Iraz Seyrek & Barbara Widera & Agata Woźniczka, 2021. "Sustainability-Related Parameters and Decision Support Tools for Kinetic Green Façades," Sustainability, MDPI, vol. 13(18), pages 1-16, September.
    7. Carmen María Calama-González & Ángel Luis León-Rodríguez & Rafael Suárez, 2018. "Daylighting and Energy Performance Evaluation of an Egg-Crate Device for Hospital Building Retrofitting in a Mediterranean Climate," Sustainability, MDPI, vol. 10(8), pages 1-17, August.
    8. Konstantoglou, Maria & Tsangrassoulis, Aris, 2016. "Dynamic operation of daylighting and shading systems: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 268-283.
    9. Mine Baran & Aysel Yilmaz, 2018. "A Study of Local Environment of Harran Historical Domed Houses in Terms of Environmental Sustainability," Journal of Asian Scientific Research, Asian Economic and Social Society, vol. 8(6), pages 211-220, June.
    10. Antonio Galiano-Garrigós & María Domenech-Mataix & Ángel Benigno González-Avilés & Carlos Rizo-Maestre, 2021. "Evaluation of Energy Performance and Comfort: Case-Study of University Buildings with Design Adapted to Local Climate," Sustainability, MDPI, vol. 13(13), pages 1-28, June.
    11. Yao Lu & Hankun Lin & Siwei Liu & Yiqiang Xiao, 2019. "Nonuniform Woven Solar Shading Screens: Shading, Mechanical, and Daylighting Performance," Sustainability, MDPI, vol. 11(20), pages 1-19, October.
    12. Jing Zhao & Yahui Du, 2019. "A Study on Energy-Saving Technologies Optimization towards Nearly Zero Energy Educational Buildings in Four Major Climatic Regions of China," Energies, MDPI, vol. 12(24), pages 1-31, December.
    13. Chi, Fang'ai & Xu, Ying & Pan, Jiajie, 2022. "Impact of shading systems with various type-number configuration combinations on energy consumption in traditional dwelling (China)," Energy, Elsevier, vol. 255(C).
    14. Krarti, Moncef, 2021. "Evaluation of PV integrated sliding-rotating overhangs for US apartment buildings," Applied Energy, Elsevier, vol. 293(C).
    15. Choul Woong Kwon & Kang Jun Lee, 2018. "Integrated Daylighting Design by Combining Passive Method with DaySim in a Classroom," Energies, MDPI, vol. 11(11), pages 1-17, November.
    16. Danijela Nikolic & Slobodan Djordjevic & Jasmina Skerlic & Jasna Radulovic, 2020. "Energy Analyses of Serbian Buildings with Horizontal Overhangs: A Case Study," Energies, MDPI, vol. 13(17), pages 1-20, September.
    17. John Emmanuel Ogbeba & Ercan Hoskara, 2019. "The Evaluation of Single-Family Detached Housing Units in terms of Integrated Photovoltaic Shading Devices: The Case of Northern Cyprus," Sustainability, MDPI, vol. 11(3), pages 1-19, January.
    18. Abdelhakim Mesloub & Aritra Ghosh & Mabrouk Touahmia & Ghazy Abdullah Albaqawy & Emad Noaime & Badr M. Alsolami, 2020. "Performance Analysis of Photovoltaic Integrated Shading Devices (PVSDs) and Semi-Transparent Photovoltaic (STPV) Devices Retrofitted to a Prototype Office Building in a Hot Desert Climate," Sustainability, MDPI, vol. 12(23), pages 1-17, December.
    19. Bustamante, Waldo & Uribe, Daniel & Vera, Sergio & Molina, Germán, 2017. "An integrated thermal and lighting simulation tool to support the design process of complex fenestration systems for office buildings," Applied Energy, Elsevier, vol. 198(C), pages 36-48.
    20. Luo, Yongqiang & Zhang, Ling & Bozlar, Michael & Liu, Zhongbing & Guo, Hongshan & Meggers, Forrest, 2019. "Active building envelope systems toward renewable and sustainable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 470-491.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:6:p:1381-:d:333194. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.