IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i5p1031-d325047.html
   My bibliography  Save this article

Modelling and Evaluation of the Thermohydraulic Performance of Finned-Tube Supercritical Carbon Dioxide Gas Coolers

Author

Listed:
  • Lei Chai

    (RCUK Centre for Sustainable Energy Use in Food Chains (CSEF), Institute of Energy Futures, Brunel University London, Uxbridge, Middlesex UB8 3PH, UK)

  • Konstantinos M. Tsamos

    (Hubbard Products Ltd, Ipswich IP3 9RR, UK)

  • Savvas A. Tassou

    (RCUK Centre for Sustainable Energy Use in Food Chains (CSEF), Institute of Energy Futures, Brunel University London, Uxbridge, Middlesex UB8 3PH, UK)

Abstract

This paper investigates the thermohydraulic performance of finned-tube supercritical carbon dioxide (sCO 2 ) gas coolers operating with refrigerant pressures near the critical point. A distributed modelling approach combined with the ε-NTU method has been developed for the simulation of the gas cooler. The heat transfer and pressure drop for each evenly divided segment are calculated using empirical correlations for Nusselt number and friction factor. The model was validated against test results and then used to investigate the influence of design and operating parameters on local and overall gas cooler performance. The results show that the refrigerant heat-transfer coefficient increases with decreasing temperature and reaches its maximum close to the pseudocritical temperature before beginning to decrease. The pressure drop increases along the flow direction with decreasing temperature. Overall performance results illustrate that higher refrigerant mass flow rate and decreasing finned-tube diameter lead to improved heat-transfer rates but also increased pressure drops. Design optimization of gas coolers should take into consideration their impact on overall refrigeration performance and life cycle cost. This is important in the drive to reduce the footprint of components, energy consumption, and environmental impacts of refrigeration and heat-pump systems. The present work provides practical guidance to the design of finned-tube gas coolers and can be used as the basis for the modelling of integrated sCO 2 refrigeration and heat-pump systems.

Suggested Citation

  • Lei Chai & Konstantinos M. Tsamos & Savvas A. Tassou, 2020. "Modelling and Evaluation of the Thermohydraulic Performance of Finned-Tube Supercritical Carbon Dioxide Gas Coolers," Energies, MDPI, vol. 13(5), pages 1-19, February.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:5:p:1031-:d:325047
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/5/1031/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/5/1031/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ge, Y.T. & Tassou, S.A. & Santosa, I. Dewa & Tsamos, K., 2015. "Design optimisation of CO2 gas cooler/condenser in a refrigeration system," Applied Energy, Elsevier, vol. 160(C), pages 973-981.
    2. Austin, Brian T. & Sumathy, K., 2011. "Transcritical carbon dioxide heat pump systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 4013-4029.
    3. Tsamos, K.M. & Ge, Y.T. & Santosa, I.D.M.C. & Tassou, S.A., 2017. "Experimental investigation of gas cooler/condenser designs and effects on a CO2 booster system," Applied Energy, Elsevier, vol. 186(P3), pages 470-479.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Natalia Rydalina & Elena Antonova & Irina Akhmetova & Svetlana Ilyashenko & Olga Afanaseva & Vincenzo Bianco & Alexander Fedyukhin, 2020. "Analysis of the Efficiency of Using Heat Exchangers with Porous Inserts in Heat and Gas Supply Systems," Energies, MDPI, vol. 13(22), pages 1-13, November.
    2. Charalampos Alexopoulos & Osama Aljolani & Florian Heberle & Tryfon C. Roumpedakis & Dieter Brüggemann & Sotirios Karellas, 2020. "Design Evaluation for a Finned-Tube CO 2 Gas Cooler in Residential Applications," Energies, MDPI, vol. 13(10), pages 1-17, May.
    3. Haicai Lyu & Han Wang & Qincheng Bi & Fenglei Niu, 2022. "Experimental Investigation on Heat Transfer and Pressure Drop of Supercritical Carbon Dioxide in a Mini Vertical Upward Flow," Energies, MDPI, vol. 15(17), pages 1-14, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rajib Uddin Rony & Huojun Yang & Sumathy Krishnan & Jongchul Song, 2019. "Recent Advances in Transcritical CO 2 (R744) Heat Pump System: A Review," Energies, MDPI, vol. 12(3), pages 1-35, January.
    2. Jesús Catalán-Gil & Daniel Sánchez & Rodrigo Llopis & Laura Nebot-Andrés & Ramón Cabello, 2018. "Energy Evaluation of Multiple Stage Commercial Refrigeration Architectures Adapted to F-Gas Regulation," Energies, MDPI, vol. 11(7), pages 1-31, July.
    3. Fatong Jia & Dazhang Yang & Jing Xie, 2021. "Numerical Investigation on the Performance of Two-Throat Nozzle Ejectors with Different Mixing Chamber Structural Parameters," Energies, MDPI, vol. 14(21), pages 1-16, October.
    4. Andrei David & Brian Vad Mathiesen & Helge Averfalk & Sven Werner & Henrik Lund, 2017. "Heat Roadmap Europe: Large-Scale Electric Heat Pumps in District Heating Systems," Energies, MDPI, vol. 10(4), pages 1-18, April.
    5. Ignacio López Paniagua & Ángel Jiménez Álvaro & Javier Rodríguez Martín & Celina González Fernández & Rafael Nieto Carlier, 2019. "Comparison of Transcritical CO 2 and Conventional Refrigerant Heat Pump Water Heaters for Domestic Applications," Energies, MDPI, vol. 12(3), pages 1-17, February.
    6. Noor Muhammad Abd Rahman & Lim Chin Haw & Ahmad Fazlizan, 2021. "A Literature Review of Naturally Ventilated Public Hospital Wards in Tropical Climate Countries for Thermal Comfort and Energy Saving Improvements," Energies, MDPI, vol. 14(2), pages 1-22, January.
    7. Guo, Yabin & Li, Yuduo & Li, Weilin, 2023. "On-site fault experiment and diagnosis research of the carbon dioxide transcritical heat pump system for energy saving," Energy, Elsevier, vol. 274(C).
    8. Adamson, Keri-Marie & Walmsley, Timothy Gordon & Carson, James K. & Chen, Qun & Schlosser, Florian & Kong, Lana & Cleland, Donald John, 2022. "High-temperature and transcritical heat pump cycles and advancements: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    9. Yu, Binbin & Yang, Jingye & Wang, Dandong & Shi, Junye & Chen, Jiangping, 2019. "An updated review of recent advances on modified technologies in transcritical CO2 refrigeration cycle," Energy, Elsevier, vol. 189(C).
    10. J. M. Belman-Flores & V. H. Rangel-Hernández & V. Pérez-García & A. Zaleta-Aguilar & Qingping Fang & D. Méndez-Méndez, 2020. "An Advanced Exergoeconomic Comparison of CO 2 -Based Transcritical Refrigeration Cycles," Energies, MDPI, vol. 13(23), pages 1-15, December.
    11. Wakui, Tetsuya & Kawayoshi, Hiroki & Yokoyama, Ryohei & Aki, Hirohisa, 2016. "Operation management of residential energy-supplying networks based on optimization approaches," Applied Energy, Elsevier, vol. 183(C), pages 340-357.
    12. Zhu, Lin & Yu, Jianlin & Zhou, Mengliu & Wang, Xiao, 2014. "Performance analysis of a novel dual-nozzle ejector enhanced cycle for solar assisted air-source heat pump systems," Renewable Energy, Elsevier, vol. 63(C), pages 735-740.
    13. Xinyu Zhang & Yunting Ge, 2023. "Power Generation with Renewable Energy and Advanced Supercritical CO 2 Thermodynamic Power Cycles: A Review," Energies, MDPI, vol. 16(23), pages 1-32, November.
    14. Wakui, Tetsuya & Yokoyama, Ryohei, 2015. "Optimal structural design of residential cogeneration systems with battery based on improved solution method for mixed-integer linear programming," Energy, Elsevier, vol. 84(C), pages 106-120.
    15. Zhang, Zhenying & Wang, Jiayu & Feng, Xu & Chang, Li & Chen, Yanhua & Wang, Xingguo, 2018. "The solutions to electric vehicle air conditioning systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 443-463.
    16. Mohanraj, M. & Belyayev, Ye. & Jayaraj, S. & Kaltayev, A., 2018. "Research and developments on solar assisted compression heat pump systems – A comprehensive review (Part A: Modeling and modifications)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 83(C), pages 90-123.
    17. Sarkar, Jahar, 2015. "Review and future trends of supercritical CO2 Rankine cycle for low-grade heat conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 434-451.
    18. Schlosser, F. & Jesper, M. & Vogelsang, J. & Walmsley, T.G. & Arpagaus, C. & Hesselbach, J., 2020. "Large-scale heat pumps: Applications, performance, economic feasibility and industrial integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    19. Abdulwahid, Alhasan Ali & Zhao, Hongxia & Wang, Zheng & Liu, Guangdi & Khalil, Essam E & Lai, Yanhua & Han, Jitian, 2022. "Thermo-economic comparison of two models of combined transcritical CO2 refrigeration and multi-effect desalination system," Applied Energy, Elsevier, vol. 308(C).
    20. Sahar Taslimi Taleghani & Mikhail Sorin & Sébastien Poncet, 2019. "Analysis and Optimization of Exergy Flows inside a Transcritical CO 2 Ejector for Refrigeration, Air Conditioning and Heat Pump Cycles," Energies, MDPI, vol. 12(9), pages 1-15, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:5:p:1031-:d:325047. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.