IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i4p942-d322878.html
   My bibliography  Save this article

Thermal Characterization of Pinus radiata Wood Vacuum-Impregnated with Octadecane

Author

Listed:
  • Rodrigo Fuentes-Sepúlveda

    (Departamento de Ingeniería Mecánica, Universidad de Santiago de Chile, Avda. Lib. Bdo. O’Higgins 3363, 9170002 Santiago, Chile)

  • Claudio García-Herrera

    (Departamento de Ingeniería Mecánica, Universidad de Santiago de Chile, Avda. Lib. Bdo. O’Higgins 3363, 9170002 Santiago, Chile)

  • Diego A. Vasco

    (Departamento de Ingeniería Mecánica, Universidad de Santiago de Chile, Avda. Lib. Bdo. O’Higgins 3363, 9170002 Santiago, Chile)

  • Carlos Salinas-Lira

    (Departamento de Ingeniería Mecánica, Universidad del Bío-Bío, Avda. Collao 1202, Casilla 5-C, 4030000 Concepción, Chile)

  • Rubén A. Ananías

    (Departamento de Ingeniería en Maderas, Universidad del Bío-Bío, Avda. Collao 1202, Casilla 5-C, 4030000 Concepción, Chile)

Abstract

The incorporation of phase change materials (PCM) in construction components has become an alternative to reduce the effect of thermal loads in buildings with low thermal inertia. This study put together the effective heat storage capacity of an organic phase change material (O-PCM, octadecane) with the construction and production potential of Pinus radiata in Chile. The wood is impregnated with octadecane by using the Bethell method, showing that it has good retention of the impregnator, and that its size was not modified. Differential scanning calorimetry analysis (DSC) showed that the composite material could achieve fusion enthalpy values from 36 (20.8 MJ/m 3 ) to 122 J/g (108.9 MJ/m 3 ). The transient line heat source method used, indicated that impregnation of Pinus radiata with octadecane increases its specific heat at temperatures from 15 to 20 °C, while its thermal conductivity decreases in the radial and the tangent directions, and increases in the longitudinal direction, showing a decrease in the orthotropic behavior of the wood. The ability of Pinus radiata wood to store latent heat positioned it as a candidate material to be considered in the building industry as a heat storage system.

Suggested Citation

  • Rodrigo Fuentes-Sepúlveda & Claudio García-Herrera & Diego A. Vasco & Carlos Salinas-Lira & Rubén A. Ananías, 2020. "Thermal Characterization of Pinus radiata Wood Vacuum-Impregnated with Octadecane," Energies, MDPI, vol. 13(4), pages 1-16, February.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:4:p:942-:d:322878
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/4/942/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/4/942/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Silva, Tiago & Vicente, Romeu & Rodrigues, Fernanda, 2016. "Literature review on the use of phase change materials in glazing and shading solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 515-535.
    2. Lazaro, Ana & Peñalosa, Conchita & Solé, Aran & Diarce, Gonzalo & Haussmann, Thomas & Fois, Magali & Zalba, Belén & Gshwander, Stefan & Cabeza, Luisa F., 2013. "Intercomparative tests on phase change materials characterisation with differential scanning calorimeter," Applied Energy, Elsevier, vol. 109(C), pages 415-420.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiang, Zhu & Palacios, Anabel & Zou, Boyang & Zhao, Yanqi & Deng, Weiyu & Zhang, Xiaosong & Ding, Yulong, 2022. "A review on the fabrication methods for structurally stabilised composite phase change materials and their impacts on the properties of materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Changyu & Wu, Yangyang & Bian, Ji & Li, Dong & Liu, Xiaoyan, 2018. "Influence of PCM design parameters on thermal and optical performance of multi-layer glazed roof," Applied Energy, Elsevier, vol. 212(C), pages 151-161.
    2. Souayfane, Farah & Biwole, Pascal Henry & Fardoun, Farouk & Achard, Patrick, 2019. "Energy performance and economic analysis of a TIM-PCM wall under different climates," Energy, Elsevier, vol. 169(C), pages 1274-1291.
    3. Michalis Michael & Fabio Favoino & Qian Jin & Alessandra Luna-Navarro & Mauro Overend, 2023. "A Systematic Review and Classification of Glazing Technologies for Building Façades," Energies, MDPI, vol. 16(14), pages 1-47, July.
    4. Ghosh, Aritra & Norton, Brian & Duffy, Aidan, 2016. "Behaviour of a SPD switchable glazing in an outdoor test cell with heat removal under varying weather conditions," Applied Energy, Elsevier, vol. 180(C), pages 695-706.
    5. Qian, Tingting & Li, Jinhong & Min, Xin & Deng, Yong & Guan, Weimin & Ning, Lei, 2016. "Radial-like mesoporous silica sphere: A promising new candidate of supporting material for storage of low-, middle-, and high-temperature heat," Energy, Elsevier, vol. 112(C), pages 1074-1083.
    6. Ahmed Hassan & Mohammad Shakeel Laghari & Yasir Rashid, 2016. "Micro-Encapsulated Phase Change Materials: A Review of Encapsulation, Safety and Thermal Characteristics," Sustainability, MDPI, vol. 8(10), pages 1-32, October.
    7. Tittelein, Pierre & Gibout, Stéphane & Franquet, Erwin & Johannes, Kevyn & Zalewski, Laurent & Kuznik, Frédéric & Dumas, Jean-Pierre & Lassue, Stéphane & Bédécarrats, Jean-Pierre & David, Damien, 2015. "Simulation of the thermal and energy behaviour of a composite material containing encapsulated-PCM: Influence of the thermodynamical modelling," Applied Energy, Elsevier, vol. 140(C), pages 269-274.
    8. Amaral, C. & Vicente, R. & Marques, P.A.A.P. & Barros-Timmons, A., 2017. "Phase change materials and carbon nanostructures for thermal energy storage: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1212-1228.
    9. Aneta Wierzbicka & Eja Pedersen & Roger Persson & Birgitta Nordquist & Kristian Stålne & Chuansi Gao & Lars-Erik Harderup & Jonas Borell & Héctor Caltenco & Barry Ness & Emilie Stroh & Yujing Li & Mat, 2018. "Healthy Indoor Environments: The Need for a Holistic Approach," IJERPH, MDPI, vol. 15(9), pages 1-13, August.
    10. Rathgeber, Christoph & Schmit, Henri & Hennemann, Peter & Hiebler, Stefan, 2014. "Investigation of pinacone hexahydrate as phase change material for thermal energy storage around 45°C," Applied Energy, Elsevier, vol. 136(C), pages 7-13.
    11. Cibele Eller & Mohamad Rida & Katharina Boudier & Caio Otoni & Gabriela Celani & Lucila Labaki & Sabine Hoffmann, 2021. "Climate-Based Analysis for the Potential Use of Coconut Oil as Phase Change Material in Buildings," Sustainability, MDPI, vol. 13(19), pages 1-20, September.
    12. Palacios, Anabel & Cong, Lin & Navarro, M.E. & Ding, Yulong & Barreneche, Camila, 2019. "Thermal conductivity measurement techniques for characterizing thermal energy storage materials – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 32-52.
    13. Parameshwaran, R. & Kalaiselvam, S., 2013. "Energy efficient hybrid nanocomposite-based cool thermal storage air conditioning system for sustainable buildings," Energy, Elsevier, vol. 59(C), pages 194-214.
    14. Saman Abolghasemi Moghaddam & Catarina Serra & Manuel Gameiro da Silva & Nuno Simões, 2023. "Comprehensive Review and Analysis of Glazing Systems towards Nearly Zero-Energy Buildings: Energy Performance, Thermal Comfort, Cost-Effectiveness, and Environmental Impact Perspectives," Energies, MDPI, vol. 16(17), pages 1-30, August.
    15. Amaral, C. & Silva, T. & Mohseni, F. & Amaral, J.S. & Amaral, V.S. & Marques, P.A.A.P. & Barros-Timmons, A. & Vicente, R., 2021. "Experimental and numerical analysis of the thermal performance of polyurethane foams panels incorporating phase change material," Energy, Elsevier, vol. 216(C).
    16. Mandilaras, I.D. & Kontogeorgos, D.A. & Founti, M.A., 2015. "A hybrid methodology for the determination of the effective heat capacity of PCM enhanced building components," Renewable Energy, Elsevier, vol. 76(C), pages 790-804.
    17. Wieprzkowicz, Anna & Heim, Dariusz, 2020. "Modelling of thermal processes in a glazing structure with temperature dependent optical properties - An example of PCM-window," Renewable Energy, Elsevier, vol. 160(C), pages 653-662.
    18. Konstantoglou, Maria & Tsangrassoulis, Aris, 2016. "Dynamic operation of daylighting and shading systems: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 268-283.
    19. Rebeca Salgado-Pizarro & Jose Antonio Padilla & Elena Xuriguera & Camila Barreneche & Ana Inés Fernández, 2021. "Novel Shape-Stabilized Phase Change Material with Cascade Character: Synthesis, Performance and Shaping Evaluation," Energies, MDPI, vol. 14(9), pages 1-13, May.
    20. Diarce, G. & Campos-Celador, Á. & Martin, K. & Urresti, A. & García-Romero, A. & Sala, J.M., 2014. "A comparative study of the CFD modeling of a ventilated active façade including phase change materials," Applied Energy, Elsevier, vol. 126(C), pages 307-317.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:4:p:942-:d:322878. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.