IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i3p566-d312818.html
   My bibliography  Save this article

Effect of EGR and Fuel Injection Strategies on the Heavy-Duty Diesel Engine Emission Performance under Transient Operation

Author

Listed:
  • Fangyuan Zhang

    (The State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130025, China)

  • Zhongshu Wang

    (The State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130025, China)

  • Jing Tian

    (The State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130025, China)

  • Linlin Li

    (SAIC, Shanghai 201201, China)

  • Kaibo Yu

    (Shanghai Volkswagen Automotive Co., Ltd., Shanghai 201805, China)

  • Kunyi He

    (The State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130025, China)

Abstract

To reduce the smoke and nitrogen oxide (NOx) emissions; a detailed study concerned with exhaust gas recirculation (EGR) and diesel injection strategy was conducted on a two-stage series turbocharging diesel engine under transient operating condition. One transient process based on the constant speed of 1650 r/min and load increases linearly from 10% to 100% within 5 s was tested in this study. The effect of the EGR valve control strategy on engine transient performance was examined. The results show that better air-fuel mixing quality can be obtained with the optimized the EGR valve open loop control strategy and the smoke opacity peak decreased more than 64%. Under the EGR valve close loop control strategy; the smoke opacity peak was lower than with open loop control strategy; but higher than without EGR. The effect of fuel injection strategy on engine transient performance was examined with the EGR valve close loop control. The results show that sectional-stage rail pressure (SSRP) strategy (increasing injection pressure from a turning point load to 100% load) and optimizing fuel injection timing can improve the engine emission performance. The satisfactory results can be obtained with lower NOx (382 ppm) emissions and the smoke opacity peak (3.8%), when the turning point load is set to 60% with the injection timing delay 6° CA.

Suggested Citation

  • Fangyuan Zhang & Zhongshu Wang & Jing Tian & Linlin Li & Kaibo Yu & Kunyi He, 2020. "Effect of EGR and Fuel Injection Strategies on the Heavy-Duty Diesel Engine Emission Performance under Transient Operation," Energies, MDPI, vol. 13(3), pages 1-17, January.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:3:p:566-:d:312818
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/3/566/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/3/566/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Zhongshu & Chen, Wenjing & Wang, Dan & Tan, Manzhi & Liu, Zhongchang & Dou, Huili, 2016. "A novel combustion evaluation method based on in-cylinder pressure traces for diesel/natural gas dual fuel engines," Energy, Elsevier, vol. 115(P1), pages 1130-1137.
    2. Agarwal, Avinash Kumar & Dhar, Atul & Gupta, Jai Gopal & Kim, Woong Il & Lee, Chang Sik & Park, Sungwook, 2014. "Effect of fuel injection pressure and injection timing on spray characteristics and particulate size–number distribution in a biodiesel fuelled common rail direct injection diesel engine," Applied Energy, Elsevier, vol. 130(C), pages 212-221.
    3. Armas, Octavio & Ballesteros, Rosario & Cardenas, María Dolores, 2012. "Thermodynamic diagnosis of diesel and biodiesel combustion processes during load-increase transient sequences," Applied Energy, Elsevier, vol. 97(C), pages 558-568.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Deng, Banglin & Cai, Wenyu & Zhang, Wanxin & Bian, Li & Che, Xiangqian & Xiang, Yihua & Wu, Di, 2025. "A comprehensive investigation of EGR (exhaust gas recirculation) effects on energy distribution and emissions of a turbo-charging diesel engine under World Harmonized transient cycle," Energy, Elsevier, vol. 316(C).
    2. Wenyu Gu & Wanhua Su, 2023. "Study on the Effects of Exhaust Gas Recirculation and Fuel Injection Strategy on Transient Process Performance of Diesel Engines," Sustainability, MDPI, vol. 15(16), pages 1-21, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fan, Baowei & Pan, Jianfeng & Yang, Wenming & Chen, Wei & Bani, Stephen, 2017. "The influence of injection strategy on mixture formation and combustion process in a direct injection natural gas rotary engine," Applied Energy, Elsevier, vol. 187(C), pages 663-674.
    2. Asgari, Behrad & Amani, Ehsan, 2017. "A multi-objective CFD optimization of liquid fuel spray injection in dry-low-emission gas-turbine combustors," Applied Energy, Elsevier, vol. 203(C), pages 696-710.
    3. Zhongchang Liu & Xing Yuan & Jing Tian & Yongqiang Han & Runzhao Li & Guanlong Gao, 2018. "Investigation of Sectional-Stage Loading Strategies on a Two-Stage Turbocharged Heavy-Duty Diesel Engine under Transient Operation with EGR," Energies, MDPI, vol. 11(1), pages 1-19, January.
    4. Shahir, V.K. & Jawahar, C.P. & Suresh, P.R., 2015. "Comparative study of diesel and biodiesel on CI engine with emphasis to emissions—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 686-697.
    5. Babu, D. & Thangarasu, Vinoth & Ramanathan, Anand, 2020. "Artificial neural network approach on forecasting diesel engine characteristics fuelled with waste frying oil biodiesel," Applied Energy, Elsevier, vol. 263(C).
    6. Feng, Zehao & Zhan, Cheng & Tang, Chenglong & Yang, Ke & Huang, Zuohua, 2016. "Experimental investigation on spray and atomization characteristics of diesel/gasoline/ethanol blends in high pressure common rail injection system," Energy, Elsevier, vol. 112(C), pages 549-561.
    7. Dimitrios N Tziourtzioumis & Anastassios M Stamatelos, 2017. "Experimental Investigation of the Effect of Biodiesel Blends on a DI Diesel Engine’s Injection and Combustion," Energies, MDPI, vol. 10(7), pages 1-15, July.
    8. Du, Wei & Zhang, Qiankun & Zhang, Zheng & Lou, Juejue & Bao, Wenhua, 2018. "Effects of injection pressure on ignition and combustion characteristics of impinging diesel spray," Applied Energy, Elsevier, vol. 226(C), pages 1163-1168.
    9. Mohamed Shameer, P. & Ramesh, K. & Sakthivel, R. & Purnachandran, R., 2017. "Effects of fuel injection parameters on emission characteristics of diesel engines operating on various biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1267-1281.
    10. Nguyen Xuan Khoa & Ocktaeck Lim, 2022. "A Review of the External and Internal Residual Exhaust Gas in the Internal Combustion Engine," Energies, MDPI, vol. 15(3), pages 1-21, February.
    11. Xu, Leilei & Bai, Xue-Song & Jia, Ming & Qian, Yong & Qiao, Xinqi & Lu, Xingcai, 2018. "Experimental and modeling study of liquid fuel injection and combustion in diesel engines with a common rail injection system," Applied Energy, Elsevier, vol. 230(C), pages 287-304.
    12. Doppalapudi, A.T. & Azad, A.K. & Khan, M.M.K., 2023. "Advanced strategies to reduce harmful nitrogen-oxide emissions from biodiesel fueled engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 174(C).
    13. Magno, Agnese & Mancaruso, Ezio & Vaglieco, Bianca Maria, 2016. "Analysis of combustion phenomena and pollutant formation in a small compression ignition engine fuelled with blended and pure rapeseed methyl ester," Energy, Elsevier, vol. 106(C), pages 618-630.
    14. Mat Yasin, M.H. & Yusaf, Talal & Mamat, R. & Fitri Yusop, A., 2014. "Characterization of a diesel engine operating with a small proportion of methanol as a fuel additive in biodiesel blend," Applied Energy, Elsevier, vol. 114(C), pages 865-873.
    15. Shi, Zhicheng & Lee, Chia-fon & Wu, Han & Li, Haiying & Wu, Yang & Zhang, Lu & Bo, Yaqing & Liu, Fushui, 2020. "Effect of injection pressure on the impinging spray and ignition characteristics of the heavy-duty diesel engine under low-temperature conditions," Applied Energy, Elsevier, vol. 262(C).
    16. Soriano, J.A. & García-Contreras, R. & Gómez, A. & Mata, C., 2019. "Comparative study of the effect of a new renewable paraffinic fuel on the combustion process of a light-duty diesel engine," Energy, Elsevier, vol. 189(C).
    17. Ho Young Kim & Jun Cong Ge & Nag Jung Choi, 2019. "Effects of Fuel Injection Pressure on Combustion and Emission Characteristics under Low Speed Conditions in a Diesel Engine Fueled with Palm Oil Biodiesel," Energies, MDPI, vol. 12(17), pages 1-14, August.
    18. Suh, Hyun Kyu & Lee, Chang Sik, 2016. "A review on atomization and exhaust emissions of a biodiesel-fueled compression ignition engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1601-1620.
    19. Martínez, Juan Daniel & Ramos, Ángel & Armas, Octavio & Murillo, Ramón & García, Tomás, 2014. "Potential for using a tire pyrolysis liquid-diesel fuel blend in a light duty engine under transient operation," Applied Energy, Elsevier, vol. 130(C), pages 437-446.
    20. Fabián Vargas & Armando Pérez & Rene Delgado & Emilio Hernández & José Alejandro Suástegui, 2019. "Performance Analysis of a Compression Ignition Engine Using Mixture Biodiesel Palm and Diesel," Sustainability, MDPI, vol. 11(18), pages 1-26, September.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:3:p:566-:d:312818. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.