IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i2p438-d309440.html
   My bibliography  Save this article

Systems Analysis of SO 2 -CO 2 Co-Capture from a Post-Combustion Coal-Fired Power Plant in Deep Eutectic Solvents

Author

Listed:
  • Kyle McGaughy

    (Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, 150 W University Blvd, Melbourne, FL 32901, USA)

  • M. Toufiq Reza

    (Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, 150 W University Blvd, Melbourne, FL 32901, USA)

Abstract

In this study, CO 2 and SO 2 captures from post-combustion flue gas from a pulverized coal-fired power plant were evaluated using deep eutectic solvents (DES) to replace existing mono-ethanol amine (MEA) and CanSolv technologies. The system design of the DES-based CO 2 and SO 2 capture was based on the National Energy Technology Laboratory’s (NETL) 550 MWe pulverized coal-fired power plant model using Illinois #06 coal. Two of the most studied DES (choline chloride and urea at a 1:2 molar ratio and methyltriphenylphosphonium bromide (METPB) and ethylene glycol at a 1:3 molar ratio) for CO 2 and SO 2 capture were evaluated for this system analysis. Physical properties of DES were evaluated using both density functional theory (DFT)-based modeling as well as with documented properties from the literature. A technoeconomic assessment (TEA) was completed to assess DES ability to capture CO 2 and SO 2 . Both solvents were able to fully dissolve and capture all SO 2 present in the flue gas. It was also found from the system analyses that choline chloride and urea outperformed METPB and ethylene glycol (had a lower final cost) when assessed at 10–30% CO 2 capture at high operating pressures (greater than 10 bar). At high system sizes (flow rate of greater than 50,000 kmoles DES per hour), choline chloride:urea was more cost effective than METPB:ethylene glycol. This study also establishes a modeling framework to evaluate future DES for physical absorption systems by both thermophysical and economic objectives. This framework can be used to greatly expedite DES candidate screening in future studies.

Suggested Citation

  • Kyle McGaughy & M. Toufiq Reza, 2020. "Systems Analysis of SO 2 -CO 2 Co-Capture from a Post-Combustion Coal-Fired Power Plant in Deep Eutectic Solvents," Energies, MDPI, vol. 13(2), pages 1-15, January.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:2:p:438-:d:309440
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/2/438/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/2/438/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ma, Chunyan & Liu, Chang & Lu, Xiaohua & Ji, Xiaoyan, 2018. "Techno-economic analysis and performance comparison of aqueous deep eutectic solvent and other physical absorbents for biogas upgrading," Applied Energy, Elsevier, vol. 225(C), pages 437-447.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zheng, Lei & Cheng, Shikun & Han, Yanzhao & Wang, Min & Xiang, Yue & Guo, Jiali & Cai, Di & Mang, Heinz-Peter & Dong, Taili & Li, Zifu & Yan, Zhengxu & Men, Yu, 2020. "Bio-natural gas industry in China: Current status and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    2. Wang, Honglin & Ma, Chunyan & Yang, Zhuhong & Lu, Xiaohua & Ji, Xiaoyan, 2020. "Improving high-pressure water scrubbing through process integration and solvent selection for biogas upgrading," Applied Energy, Elsevier, vol. 276(C).
    3. Edyta Słupek & Patrycja Makoś & Jacek Gębicki, 2020. "Theoretical and Economic Evaluation of Low-Cost Deep Eutectic Solvents for Effective Biogas Upgrading to Bio-Methane," Energies, MDPI, vol. 13(13), pages 1-19, July.
    4. Wantz, Eliot & Benizri, David & Dietrich, Nicolas & Hébrard, Gilles, 2022. "Rate-based modeling approach for High Pressure Water Scrubbing with unsteady gas flowrate and multicomponent absorption applied to biogas upgrading," Applied Energy, Elsevier, vol. 312(C).
    5. Chen, Yifeng & Song, Shuailong & Li, Ning & Wu, Jian & Lu, Xiaohua & Ji, Xiaoyan, 2022. "Developing hybrid 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide/titanium dioxide/water absorbent for CO2 separation," Applied Energy, Elsevier, vol. 326(C).
    6. Lee, Cornelius Basil Tien Loong & Wu, Ta Yeong, 2021. "A review on solvent systems for furfural production from lignocellulosic biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    7. Ma, Chunyan & Wang, Nan & Ye, Nannan & Ji, Xiaoyan, 2021. "CO2 capture using ionic liquid-based hybrid solvents from experiment to process evaluation," Applied Energy, Elsevier, vol. 304(C).
    8. Chen, Yifeng & Sun, Yunhao & Yang, Zhuhong & Lu, Xiaohua & Ji, Xiaoyan, 2020. "CO2 separation using a hybrid choline-2-pyrrolidine-carboxylic acid/polyethylene glycol/water absorbent," Applied Energy, Elsevier, vol. 257(C).
    9. Tooba Qureshi & Majeda Khraisheh & Fares Almomani, 2023. "Cost and Heat Integration Analysis for CO 2 Removal Using Imidazolium-Based Ionic Liquid-ASPEN PLUS Modelling Study," Sustainability, MDPI, vol. 15(4), pages 1-23, February.
    10. Kazmi, Bilal & Haider, Junaid & Ammar Taqvi, Syed Ali & Qyyum, Muhammad Abdul & Ali, Syed Imran & Hussain Awan, Zahoor Ul & Lim, Hankwon & Naqvi, Muhammad & Naqvi, Salman Raza, 2022. "Thermodynamic and economic assessment of cyano functionalized anion based ionic liquid for CO2 removal from natural gas integrated with, single mixed refrigerant liquefaction process for clean energy," Energy, Elsevier, vol. 239(PE).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:2:p:438-:d:309440. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.