IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i2p327-d306853.html
   My bibliography  Save this article

Longitudinal End Effects in a Linear Wave Power Generator

Author

Listed:
  • Boel Ekergård

    (Department of Industrial Economics, Electrical and Mechanical Engineering, University West, 461 86 Trollhättan, Sweden)

  • Mats Leijon

    (Swedish Centre for Renewable Electric Energy Conversion, Department on Engineering Sciences, Uppsala University, 751 21 Uppsala, Sweden
    Department of Electrical Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden)

Abstract

Even though the magnetic circuit of a linear electric machine is very similar to a rotating electric machine, they diverge in one fundamental property. The linear generator is open in both ends, i.e., the magnetic circuit is non-symmetric. This paper investigates and discusses the drawbacks of this non-symmetric design in a linear permanent magnet generator, installed in a wave energy conversion system. A two-dimensional geometry has been utilized for the numerical calculations in a finite element method simulation tool. The results present an increased cogging force and significant core losses in the translator as consequences of the longitudinal ends in the machine.

Suggested Citation

  • Boel Ekergård & Mats Leijon, 2020. "Longitudinal End Effects in a Linear Wave Power Generator," Energies, MDPI, vol. 13(2), pages 1-11, January.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:2:p:327-:d:306853
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/2/327/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/2/327/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Eriksson, Sandra & Solum, Andreas & Leijon, Mats & Bernhoff, Hans, 2008. "Simulations and experiments on a 12kW direct driven PM synchronous generator for wind power," Renewable Energy, Elsevier, vol. 33(4), pages 674-681.
    2. Leijon, M. & Danielsson, O. & Eriksson, M. & Thorburn, K. & Bernhoff, H. & Isberg, J. & Sundberg, J. & Ivanova, I. & Sjöstedt, E. & Ågren, O. & Karlsson, K.E. & Wolfbrandt, A., 2006. "An electrical approach to wave energy conversion," Renewable Energy, Elsevier, vol. 31(9), pages 1309-1319.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Raju Ahamed & Kristoffer McKee & Ian Howard, 2022. "A Review of the Linear Generator Type of Wave Energy Converters’ Power Take-Off Systems," Sustainability, MDPI, vol. 14(16), pages 1-42, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stefan Sjökvist & Sandra Eriksson, 2017. "Investigation of Permanent Magnet Demagnetization in Synchronous Machines during Multiple Short-Circuit Fault Conditions," Energies, MDPI, vol. 10(10), pages 1-12, October.
    2. Anders Goude & Morgan Rossander, 2017. "Force Measurements on a VAWT Blade in Parked Conditions," Energies, MDPI, vol. 10(12), pages 1-15, November.
    3. Tjiu, Willy & Marnoto, Tjukup & Mat, Sohif & Ruslan, Mohd Hafidz & Sopian, Kamaruzzaman, 2015. "Darrieus vertical axis wind turbine for power generation I: Assessment of Darrieus VAWT configurations," Renewable Energy, Elsevier, vol. 75(C), pages 50-67.
    4. Tatiana Potapenko & Jessica S. Döhler & Francisco Francisco & George Lavidas & Irina Temiz, 2023. "Renewable Energy Potential for Micro-Grid at Hvide Sande," Sustainability, MDPI, vol. 15(3), pages 1-17, January.
    5. Henfridsson, Urban & Neimane, Viktoria & Strand, Kerstin & Kapper, Robert & Bernhoff, Hans & Danielsson, Oskar & Leijon, Mats & Sundberg, Jan & Thorburn, Karin & Ericsson, Ellerth & Bergman, Karl, 2007. "Wave energy potential in the Baltic Sea and the Danish part of the North Sea, with reflections on the Skagerrak," Renewable Energy, Elsevier, vol. 32(12), pages 2069-2084.
    6. Astariz, S. & Iglesias, G., 2015. "The economics of wave energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 397-408.
    7. Oh, Ki-Yong & Park, Joon-Young & Lee, Jun-Shin & Lee, JaeKyung, 2015. "Implementation of a torque and a collective pitch controller in a wind turbine simulator to characterize the dynamics at three control regions," Renewable Energy, Elsevier, vol. 79(C), pages 150-160.
    8. Yue Hong & Mikael Eriksson & Cecilia Boström & Jianfei Pan & Yun Liu & Rafael Waters, 2020. "Damping Effect Coupled with the Internal Translator Mass of Linear Generator-Based Wave Energy Converters," Energies, MDPI, vol. 13(17), pages 1-14, August.
    9. Farooqui, Suhail Zaki, 2012. "Conversion of squirrel cage induction motors to wind turbine PMG," Renewable Energy, Elsevier, vol. 41(C), pages 345-349.
    10. Skoglund, Annika & Leijon, Mats & Rehn, Alf & Lindahl, Marcus & Waters, Rafael, 2010. "On the physics of power, energy and economics of renewable electric energy sources - Part II," Renewable Energy, Elsevier, vol. 35(8), pages 1735-1740.
    11. Chun-Yu Hsiao & Sheng-Nian Yeh & Jonq-Chin Hwang, 2014. "Design of High Performance Permanent-Magnet Synchronous Wind Generators," Energies, MDPI, vol. 7(11), pages 1-20, November.
    12. Mendes, R.P.G. & Calado, M.R.A. & Mariano, S.J.P.S., 2012. "Wave energy potential in Portugal–Assessment based on probabilistic description of ocean waves parameters," Renewable Energy, Elsevier, vol. 47(C), pages 1-8.
    13. Tatiana Potapenko & Joseph Burchell & Sandra Eriksson & Irina Temiz, 2021. "Wave Energy Converter’s Slack and Stiff Connection: Study of Absorbed Power in Irregular Waves," Energies, MDPI, vol. 14(23), pages 1-21, November.
    14. A. H. Samitha Weerakoon & Young-Ho Lee & Mohsen Assadi, 2023. "Wave Energy Convertor for Bilateral Offshore Wave Flows: A Computational Fluid Dynamics (CFD) Study," Sustainability, MDPI, vol. 15(9), pages 1-40, April.
    15. Liguo Wang & Jan Isberg, 2015. "Nonlinear Passive Control of a Wave Energy Converter Subject to Constraints in Irregular Waves," Energies, MDPI, vol. 8(7), pages 1-15, June.
    16. Guizzi, Giuseppe Leo & Manno, Michele & Manzi, Guido & Salvatori, Marco & Serpella, Domenico, 2014. "Preliminary study on a kinetic energy recovery system for sailing yachts," Renewable Energy, Elsevier, vol. 62(C), pages 216-225.
    17. Gholikhani, Mohammadreza & Nasouri, Reza & Tahami, Seyed Amid & Legette, Sarah & Dessouky, Samer & Montoya, Arturo, 2019. "Harvesting kinetic energy from roadway pavement through an electromagnetic speed bump," Applied Energy, Elsevier, vol. 250(C), pages 503-511.
    18. Alireza Shadmani & Mohammad Reza Nikoo & Riyadh I. Al-Raoush & Nasrin Alamdari & Amir H. Gandomi, 2022. "The Optimal Configuration of Wave Energy Conversions Respective to the Nearshore Wave Energy Potential," Energies, MDPI, vol. 15(20), pages 1-29, October.
    19. Jesús Antonio Enríquez Santiago & Orlando Lastres Danguillecourt & Guillermo Ibáñez Duharte & Jorge Evaristo Conde Díaz & Antonio Verde Añorve & Quetzalcoatl Hernandez Escobedo & Joel Pantoja Enríquez, 2021. "Dimensioning Optimization of the Permanent Magnet Synchronous Generator for Direct Drive Wind Turbines," Energies, MDPI, vol. 14(21), pages 1-13, November.
    20. Mohd Zin, Abdullah Asuhaimi B. & Pesaran H.A., Mahmoud & Khairuddin, Azhar B. & Jahanshaloo, Leila & Shariati, Omid, 2013. "An overview on doubly fed induction generators′ controls and contributions to wind based electricity generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 692-708.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:2:p:327-:d:306853. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.