IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v31y2006i9p1309-1319.html
   My bibliography  Save this article

An electrical approach to wave energy conversion

Author

Listed:
  • Leijon, M.
  • Danielsson, O.
  • Eriksson, M.
  • Thorburn, K.
  • Bernhoff, H.
  • Isberg, J.
  • Sundberg, J.
  • Ivanova, I.
  • Sjöstedt, E.
  • Ågren, O.
  • Karlsson, K.E.
  • Wolfbrandt, A.

Abstract

Motions in nature, for example ocean waves, can play a significant role in tomorrow's electricity production, but the constructions require adaptations to its media. Engineers planning hydropower plants have always taken natural conditions, such as fall height, speed of flow, and geometry, as basic design parameters and constraints in the design. The present paper describes a novel approach for electric power conversion of the vast ocean wave energy. The suggested linear electric energy converter is adapted to the natural wave motion using straightforward technology. Extensive simulations of the wave energy concept are presented, along with results from the experimental setup of a multisided permanent magnet linear generator. The prototype is designed through systematic electromagnetic field calculations. The experimental results are used for the verification of measurements in the design process of future full-scale direct wave energy converters. The present paper, describes the energy conversion concept from a system perspective, and also discusses the economical and some environmental considerations for the project.

Suggested Citation

  • Leijon, M. & Danielsson, O. & Eriksson, M. & Thorburn, K. & Bernhoff, H. & Isberg, J. & Sundberg, J. & Ivanova, I. & Sjöstedt, E. & Ågren, O. & Karlsson, K.E. & Wolfbrandt, A., 2006. "An electrical approach to wave energy conversion," Renewable Energy, Elsevier, vol. 31(9), pages 1309-1319.
  • Handle: RePEc:eee:renene:v:31:y:2006:i:9:p:1309-1319
    DOI: 10.1016/j.renene.2005.07.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148105002120
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2005.07.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Falnes, Johannes & Lovseth, Jorgen, 1991. "Ocean wave energy," Energy Policy, Elsevier, vol. 19(8), pages 768-775, October.
    2. Leijon, Mats & Bernhoff, Hans & Berg, Marcus & Ågren, Olov, 2003. "Economical considerations of renewable electric energy production—especially development of wave energy," Renewable Energy, Elsevier, vol. 28(8), pages 1201-1209.
    3. Clément, Alain & McCullen, Pat & Falcão, António & Fiorentino, Antonio & Gardner, Fred & Hammarlund, Karin & Lemonis, George & Lewis, Tony & Nielsen, Kim & Petroncini, Simona & Pontes, M. -Teresa & Sc, 2002. "Wave energy in Europe: current status and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 6(5), pages 405-431, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gholikhani, Mohammadreza & Roshani, Hossein & Dessouky, Samer & Papagiannakis, A.T., 2020. "A critical review of roadway energy harvesting technologies," Applied Energy, Elsevier, vol. 261(C).
    2. Guizzi, Giuseppe Leo & Manno, Michele & Manzi, Guido & Salvatori, Marco & Serpella, Domenico, 2014. "Preliminary study on a kinetic energy recovery system for sailing yachts," Renewable Energy, Elsevier, vol. 62(C), pages 216-225.
    3. Yue Hong & Mikael Eriksson & Cecilia Boström & Jianfei Pan & Yun Liu & Rafael Waters, 2020. "Damping Effect Coupled with the Internal Translator Mass of Linear Generator-Based Wave Energy Converters," Energies, MDPI, vol. 13(17), pages 1-14, August.
    4. Gholikhani, Mohammadreza & Nasouri, Reza & Tahami, Seyed Amid & Legette, Sarah & Dessouky, Samer & Montoya, Arturo, 2019. "Harvesting kinetic energy from roadway pavement through an electromagnetic speed bump," Applied Energy, Elsevier, vol. 250(C), pages 503-511.
    5. Jennifer Leijon & Jonathan Sjölund & Boel Ekergård & Cecilia Boström & Sandra Eriksson & Irina Temiz & Mats Leijon, 2017. "Study of an Altered Magnetic Circuit of a Permanent Magnet Linear Generator for Wave Power," Energies, MDPI, vol. 11(1), pages 1-13, December.
    6. Henfridsson, Urban & Neimane, Viktoria & Strand, Kerstin & Kapper, Robert & Bernhoff, Hans & Danielsson, Oskar & Leijon, Mats & Sundberg, Jan & Thorburn, Karin & Ericsson, Ellerth & Bergman, Karl, 2007. "Wave energy potential in the Baltic Sea and the Danish part of the North Sea, with reflections on the Skagerrak," Renewable Energy, Elsevier, vol. 32(12), pages 2069-2084.
    7. Astariz, S. & Iglesias, G., 2015. "The economics of wave energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 397-408.
    8. Alireza Shadmani & Mohammad Reza Nikoo & Riyadh I. Al-Raoush & Nasrin Alamdari & Amir H. Gandomi, 2022. "The Optimal Configuration of Wave Energy Conversions Respective to the Nearshore Wave Energy Potential," Energies, MDPI, vol. 15(20), pages 1-29, October.
    9. Wan, Ling & Moan, Torgeir & Gao, Zhen & Shi, Wei, 2024. "A review on the technical development of combined wind and wave energy conversion systems," Energy, Elsevier, vol. 294(C).
    10. Collins, Ieuan & Hossain, Mokarram & Dettmer, Wulf & Masters, Ian, 2021. "Flexible membrane structures for wave energy harvesting: A review of the developments, materials and computational modelling approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    11. Pasquale Contestabile & Enrico Di Lauro & Mariano Buccino & Diego Vicinanza, 2016. "Economic Assessment of Overtopping BReakwater for Energy Conversion (OBREC): A Case Study in Western Australia," Sustainability, MDPI, vol. 9(1), pages 1-28, December.
    12. Shabnam Hosseinzadeh & Amir Etemad-Shahidi & Rodney A. Stewart, 2023. "Site Selection of Combined Offshore Wind and Wave Energy Farms: A Systematic Review," Energies, MDPI, vol. 16(4), pages 1-33, February.
    13. Skoglund, Annika & Leijon, Mats & Rehn, Alf & Lindahl, Marcus & Waters, Rafael, 2010. "On the physics of power, energy and economics of renewable electric energy sources - Part II," Renewable Energy, Elsevier, vol. 35(8), pages 1735-1740.
    14. Mendes, R.P.G. & Calado, M.R.A. & Mariano, S.J.P.S., 2012. "Wave energy potential in Portugal–Assessment based on probabilistic description of ocean waves parameters," Renewable Energy, Elsevier, vol. 47(C), pages 1-8.
    15. Boström, C. & Lejerskog, E. & Stålberg, M. & Thorburn, K. & Leijon, M., 2009. "Experimental results of rectification and filtration from an offshore wave energy system," Renewable Energy, Elsevier, vol. 34(5), pages 1381-1387.
    16. Boel Ekergård & Mats Leijon, 2020. "Longitudinal End Effects in a Linear Wave Power Generator," Energies, MDPI, vol. 13(2), pages 1-11, January.
    17. Tatiana Potapenko & Joseph Burchell & Sandra Eriksson & Irina Temiz, 2021. "Wave Energy Converter’s Slack and Stiff Connection: Study of Absorbed Power in Irregular Waves," Energies, MDPI, vol. 14(23), pages 1-21, November.
    18. Waters, Rafael & Engström, Jens & Isberg, Jan & Leijon, Mats, 2009. "Wave climate off the Swedish west coast," Renewable Energy, Elsevier, vol. 34(6), pages 1600-1606.
    19. Amon, Ean & Brekken, Ted K.A. & von Jouanne, Annette, 2011. "A power analysis and data acquisition system for ocean wave energy device testing," Renewable Energy, Elsevier, vol. 36(7), pages 1922-1930.
    20. Silvia Bozzi & Adrià Moreno Miquel & Alessandro Antonini & Giuseppe Passoni & Renata Archetti, 2013. "Modeling of a Point Absorber for Energy Conversion in Italian Seas," Energies, MDPI, vol. 6(6), pages 1-19, June.
    21. Kamranzad, Bahareh & Hadadpour, Sanaz, 2020. "A multi-criteria approach for selection of wave energy converter/location," Energy, Elsevier, vol. 204(C).
    22. Tatiana Potapenko & Jessica S. Döhler & Francisco Francisco & George Lavidas & Irina Temiz, 2023. "Renewable Energy Potential for Micro-Grid at Hvide Sande," Sustainability, MDPI, vol. 15(3), pages 1-17, January.
    23. A. H. Samitha Weerakoon & Young-Ho Lee & Mohsen Assadi, 2023. "Wave Energy Convertor for Bilateral Offshore Wave Flows: A Computational Fluid Dynamics (CFD) Study," Sustainability, MDPI, vol. 15(9), pages 1-40, April.
    24. Liguo Wang & Jan Isberg, 2015. "Nonlinear Passive Control of a Wave Energy Converter Subject to Constraints in Irregular Waves," Energies, MDPI, vol. 8(7), pages 1-15, June.
    25. Malik, A.Q., 2011. "Assessment of the potential of renewables for Brunei Darussalam," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 427-437, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ilyas, Arqam & Kashif, Syed A.R. & Saqib, Muhammad A. & Asad, Muhammad M., 2014. "Wave electrical energy systems: Implementation, challenges and environmental issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 260-268.
    2. Liang, Bingchen & Fan, Fei & Liu, Fushun & Gao, Shanhong & Zuo, Hongyan, 2014. "22-Year wave energy hindcast for the China East Adjacent Seas," Renewable Energy, Elsevier, vol. 71(C), pages 200-207.
    3. Hadadpour, Sanaz & Etemad-Shahidi, Amir & Jabbari, Ebrahim & Kamranzad, Bahareh, 2014. "Wave energy and hot spots in Anzali port," Energy, Elsevier, vol. 74(C), pages 529-536.
    4. Hughes, Michael G. & Heap, Andrew D., 2010. "National-scale wave energy resource assessment for Australia," Renewable Energy, Elsevier, vol. 35(8), pages 1783-1791.
    5. Khojasteh, Danial & Khojasteh, Davood & Kamali, Reza & Beyene, Asfaw & Iglesias, Gregorio, 2018. "Assessment of renewable energy resources in Iran; with a focus on wave and tidal energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2992-3005.
    6. Blažauskas, Nerijus & Pašilis, Aleksas & Knolis, Audrius, 2015. "Potential applications for small scale wave energy installations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 297-305.
    7. Kovaleva, Olga & Eelsalu, Maris & Soomere, Tarmo, 2017. "Hot-spots of large wave energy resources in relatively sheltered sections of the Baltic Sea coast," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 424-437.
    8. Saket, A. & Etemad-Shahidi, A., 2012. "Wave energy potential along the northern coasts of the Gulf of Oman, Iran," Renewable Energy, Elsevier, vol. 40(1), pages 90-97.
    9. Leijon, Mats & Skoglund, Annika & Waters, Rafael & Rehn, Alf & Lindahl, Marcus, 2010. "On the physics of power, energy and economics of renewable electric energy sources – Part I," Renewable Energy, Elsevier, vol. 35(8), pages 1729-1734.
    10. Wang, Zhifeng & Dong, Sheng & Li, Xue & Guedes Soares, C., 2016. "Assessments of wave energy in the Bohai Sea, China," Renewable Energy, Elsevier, vol. 90(C), pages 145-156.
    11. Mustapa, M.A. & Yaakob, O.B. & Ahmed, Yasser M. & Rheem, Chang-Kyu & Koh, K.K. & Adnan, Faizul Amri, 2017. "Wave energy device and breakwater integration: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 43-58.
    12. Iglesias, G. & López, M. & Carballo, R. & Castro, A. & Fraguela, J.A. & Frigaard, P., 2009. "Wave energy potential in Galicia (NW Spain)," Renewable Energy, Elsevier, vol. 34(11), pages 2323-2333.
    13. Su, Wen-Ray & Chen, Hongey & Chen, Wei-Bo & Chang, Chih-Hsin & Lin, Lee-Yaw & Jang, Jiun-Huei & Yu, Yi-Chiang, 2018. "Numerical investigation of wave energy resources and hotspots in the surrounding waters of Taiwan," Renewable Energy, Elsevier, vol. 118(C), pages 814-824.
    14. Skoglund, Annika & Leijon, Mats & Rehn, Alf & Lindahl, Marcus & Waters, Rafael, 2010. "On the physics of power, energy and economics of renewable electric energy sources - Part II," Renewable Energy, Elsevier, vol. 35(8), pages 1735-1740.
    15. Silvia Bozzi & Adrià Moreno Miquel & Alessandro Antonini & Giuseppe Passoni & Renata Archetti, 2013. "Modeling of a Point Absorber for Energy Conversion in Italian Seas," Energies, MDPI, vol. 6(6), pages 1-19, June.
    16. Liang, Bingchen & Fan, Fei & Yin, Zegao & Shi, Hongda & Lee, Dongyong, 2013. "Numerical modelling of the nearshore wave energy resources of Shandong peninsula, China," Renewable Energy, Elsevier, vol. 57(C), pages 330-338.
    17. Mota, P. & Pinto, J.P., 2014. "Wave energy potential along the western Portuguese coast," Renewable Energy, Elsevier, vol. 71(C), pages 8-17.
    18. Rusu, Eugen & Guedes Soares, C., 2009. "Numerical modelling to estimate the spatial distribution of the wave energy in the Portuguese nearshore," Renewable Energy, Elsevier, vol. 34(6), pages 1501-1516.
    19. Hammar, Linus & Ehnberg, Jimmy & Mavume, Alberto & Cuamba, Boaventura C. & Molander, Sverker, 2012. "Renewable ocean energy in the Western Indian Ocean," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4938-4950.
    20. Pasta, Edoardo & Faedo, Nicolás & Mattiazzo, Giuliana & Ringwood, John V., 2023. "Towards data-driven and data-based control of wave energy systems: Classification, overview, and critical assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:31:y:2006:i:9:p:1309-1319. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.