IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i20p5465-d431458.html
   My bibliography  Save this article

Mass Transfer Correlation and Optimization of Carbon Dioxide Capture in a Microchannel Contactor: A Case of CO 2 -Rich Gas

Author

Listed:
  • Nattee Akkarawatkhoosith

    (Department of Chemical Engineering, Faculty of Engineering, Mahidol University, 25/25 Phuttamonthon 4 Road, Nakhon Pathom 73170, Thailand)

  • Wannarak Nopcharoenkul

    (Department of Agro-Industrial, Food and Environmental Technology, King Mongkut’s University of Technology North Bangkok, Pracharat 1 Road, Wongsawang, Bansue, Bangkok 10800, Thailand)

  • Amaraporn Kaewchada

    (Department of Agro-Industrial, Food and Environmental Technology, King Mongkut’s University of Technology North Bangkok, Pracharat 1 Road, Wongsawang, Bansue, Bangkok 10800, Thailand)

  • Attasak Jaree

    (Department of Chemical Engineering, Faculty of Engineering, Kasetsart University, Chatuchak, Bangkok 10900, Thailand)

Abstract

This work focused on the application of a microchannel contactor for CO 2 capture using water as absorbent, especially for the application of CO 2 -rich gas. The influence of operating conditions (temperature, volumetric flow rate of gas and liquid, and CO 2 concentration) on the absorption efficiency and the overall liquid-side volumetric mass transfer coefficient was presented in terms of the main effects and interactions based on the factorial design of experiments. It was found that 70.9% of CO 2 capture was achieved under the operating conditions as follows; temperature of 50 °C, CO 2 inlet fraction of 53.7%, total gas volumetric flow rate of 150 mL min −1 , and adsorbent volumetric flow rate of 1 mL min −1 . Outstanding performance of CO 2 capture was demonstrated with the overall liquid-side volumetric mass transfer coefficient of 0.26 s −1 . Further enhancing the system by using 2.2 M of monoethanolamine in water (1:1 molar ratio of MEA-to-CO 2 ) boosted the absorption efficiency up to 88%.

Suggested Citation

  • Nattee Akkarawatkhoosith & Wannarak Nopcharoenkul & Amaraporn Kaewchada & Attasak Jaree, 2020. "Mass Transfer Correlation and Optimization of Carbon Dioxide Capture in a Microchannel Contactor: A Case of CO 2 -Rich Gas," Energies, MDPI, vol. 13(20), pages 1-15, October.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:20:p:5465-:d:431458
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/20/5465/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/20/5465/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Noorollahi, Younes & Kheirrouz, Mehdi & Asl, Hadi Farabi & Yousefi, Hossein & Hajinezhad, Ahmad, 2015. "Biogas production potential from livestock manure in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 748-754.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dehbani, Maryam & Rashidi, Hamed, 2023. "Simultaneous use of microfluidics, ultrasound and alcoholic solvents for improving CO2 desorption process," Energy, Elsevier, vol. 276(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. O’Shea, Richard & Kilgallon, Ian & Wall, David & Murphy, Jerry D., 2016. "Quantification and location of a renewable gas industry based on digestion of wastes in Ireland," Applied Energy, Elsevier, vol. 175(C), pages 229-239.
    2. Safieddin Ardebili, Seyed Mohammad, 2020. "Green electricity generation potential from biogas produced by anaerobic digestion of farm animal waste and agriculture residues in Iran," Renewable Energy, Elsevier, vol. 154(C), pages 29-37.
    3. Hend Dakhel Alhassany & Safaa Malik Abbas & Marcos Tostado-Véliz & David Vera & Salah Kamel & Francisco Jurado, 2022. "Review of Bioenergy Potential from the Agriculture Sector in Iraq," Energies, MDPI, vol. 15(7), pages 1-17, April.
    4. Zareei, Samira, 2018. "Evaluation of biogas potential from livestock manures and rural wastes using GIS in Iran," Renewable Energy, Elsevier, vol. 118(C), pages 351-356.
    5. Silva, Felipe Pinheiro & de Souza, Samuel Nelson Melegari & Kitamura, Danilo Sey & Nogueira, Carlos Eduardo Camargo & Otto, Rodrigo Bueno, 2018. "Energy efficiency of a micro-generation unit of electricity from biogas of swine manure," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3900-3906.
    6. Islam, KM Nazmul & Sarker, Tapan & Taghizadeh-Hesary, Farhad & Atri, Anashuwa Chowdhury & Alam, Mohammad Shafiul, 2021. "Renewable energy generation from livestock waste for a sustainable circular economy in Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    7. Qian Li & Jingjing Wang & Xiaoyang Wang & Yubin Wang, 2022. "The Impact of Training on Beef Cattle Farmers’ Installation of Biogas Digesters," Energies, MDPI, vol. 15(9), pages 1-14, April.
    8. Qyyum, Muhammad Abdul & Haider, Junaid & Qadeer, Kinza & Valentina, Valentina & Khan, Amin & Yasin, Muhammad & Aslam, Muhammad & De Guido, Giorgia & Pellegrini, Laura A. & Lee, Moonyong, 2020. "Biogas to liquefied biomethane: Assessment of 3P's–Production, processing, and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    9. Loh, S.K. & Nasrin, A.B. & Mohamad Azri, S. & Nurul Adela, B. & Muzzammil, N. & Daryl Jay, T. & Stasha Eleanor, R.A. & Lim, W.S. & Choo, Y.M. & Kaltschmitt, M., 2017. "First Report on Malaysia’s experiences and development in biogas capture and utilization from palm oil mill effluent under the Economic Transformation Programme: Current and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1257-1274.
    10. Norouzi, Maryam & Yeganeh, Mansour & Yusaf, Talal, 2021. "Landscape framework for the exploitation of renewable energy resources and potentials in urban scale (case study: Iran)," Renewable Energy, Elsevier, vol. 163(C), pages 300-319.
    11. Loganath, Radhakrishnan & Senophiyah-Mary, J., 2020. "Critical review on the necessity of bioelectricity generation from slaughterhouse industry waste and wastewater using different anaerobic digestion reactors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    12. Jahangir, Mohammad Hossein & Montazeri, Mohammad & Mousavi, Seyed Ali & Kargarzadeh, Arash, 2022. "Reducing carbon emissions of industrial large livestock farms using hybrid renewable energy systems," Renewable Energy, Elsevier, vol. 189(C), pages 52-65.
    13. Neshat, Soheil A. & Mohammadi, Maedeh & Najafpour, Ghasem D. & Lahijani, Pooya, 2017. "Anaerobic co-digestion of animal manures and lignocellulosic residues as a potent approach for sustainable biogas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 308-322.
    14. Najafi, Fatemeh & Sedaghat, Ahmad & Mostafaeipour, Ali & Issakhov, Alibek, 2021. "Location assessment for producing biodiesel fuel from Jatropha Curcas in Iran," Energy, Elsevier, vol. 236(C).
    15. Gao, Zhenghui & Alshehri, Khaled & Li, Yuan & Qian, Hang & Sapsford, Devin & Cleall, Peter & Harbottle, Michael, 2022. "Advances in biological techniques for sustainable lignocellulosic waste utilization in biogas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    16. Tabatabaei, Meisam & Aghbashlo, Mortaza & Valijanian, Elena & Kazemi Shariat Panahi, Hamed & Nizami, Abdul-Sattar & Ghanavati, Hossein & Sulaiman, Alawi & Mirmohamadsadeghi, Safoora & Karimi, Keikhosr, 2020. "A comprehensive review on recent biological innovations to improve biogas production, Part 2: Mainstream and downstream strategies," Renewable Energy, Elsevier, vol. 146(C), pages 1392-1407.
    17. Abdeshahian, Peyman & Lim, Jeng Shiun & Ho, Wai Shin & Hashim, Haslenda & Lee, Chew Tin, 2016. "Potential of biogas production from farm animal waste in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 714-723.
    18. Zareei, Samira, 2018. "Project scheduling for constructing biogas plant using critical path method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 756-759.
    19. Khoshgoftar Manesh, M.H. & Rezazadeh, A. & Kabiri, S., 2020. "A feasibility study on the potential, economic, and environmental advantages of biogas production from poultry manure in Iran," Renewable Energy, Elsevier, vol. 159(C), pages 87-106.
    20. Mollahosseini, Arash & Hosseini, Seyed Amid & Jabbari, Mostafa & Figoli, Alberto & Rahimpour, Ahmad, 2017. "Renewable energy management and market in Iran: A holistic review on current state and future demands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 774-788.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:20:p:5465-:d:431458. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.