IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i18p4761-d412541.html
   My bibliography  Save this article

Pore-Filled Anion-Exchange Membranes with Double Cross-Linking Structure for Fuel Cells and Redox Flow Batteries

Author

Listed:
  • Do-Hyeong Kim

    (Department of Green Chemical Engineering, College of Engineering, Sangmyung University, Cheonan 31066, Korea)

  • Moon-Sung Kang

    (Department of Green Chemical Engineering, College of Engineering, Sangmyung University, Cheonan 31066, Korea)

Abstract

In this work, high-performance pore-filled anion-exchange membranes (PFAEMs) with double cross-linking structures have been successfully developed for application to promising electrochemical energy conversion systems, such as alkaline direct liquid fuel cells (ADLFCs) and vanadium redox flow batteries (VRFBs). Specifically, two kinds of porous polytetrafluoroethylene (PTFE) substrates, with different hydrophilicities, were utilized for the membrane fabrication. The PTFE-based PFAEMs revealed, both excellent electrochemical characteristics, and chemical stability in harsh environments. It was proven that the use of a hydrophilic porous substrate is more desirable for the efficient power generation of ADLFCs, mainly owing to the facilitated transport of hydroxyl ions through the membrane, showing an excellent maximum power density of around 400 mW cm −2 at 60 °C. In the case of VRFB, however, the battery cell employing the hydrophobic PTFE-based PFAEM exhibited the highest energy efficiency (87%, cf. AMX = 82%) among the tested membranes, because the crossover rate of vanadium redox species through the membrane most significantly affects the VRFB efficiency. The results imply that the properties of a porous substrate for preparing the membranes should match the operating environment, for successful applications to electrochemical energy conversion processes.

Suggested Citation

  • Do-Hyeong Kim & Moon-Sung Kang, 2020. "Pore-Filled Anion-Exchange Membranes with Double Cross-Linking Structure for Fuel Cells and Redox Flow Batteries," Energies, MDPI, vol. 13(18), pages 1-16, September.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:18:p:4761-:d:412541
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/18/4761/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/18/4761/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Benipal, Neeva & Qi, Ji & Gentile, Jacob C. & Li, Wenzhen, 2017. "Direct glycerol fuel cell with polytetrafluoroethylene (PTFE) thin film separator," Renewable Energy, Elsevier, vol. 105(C), pages 647-655.
    2. Zeng, L. & Tang, Z.K. & Zhao, T.S., 2014. "A high-performance alkaline exchange membrane direct formate fuel cell," Applied Energy, Elsevier, vol. 115(C), pages 405-410.
    3. Kirubakaran, A. & Jain, Shailendra & Nema, R.K., 2009. "A review on fuel cell technologies and power electronic interface," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2430-2440, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hyeon-Bee Song & Jong-Hyeok Park & Jin-Soo Park & Moon-Sung Kang, 2021. "Pore-Filled Proton-Exchange Membranes with Fluorinated Moiety for Fuel Cell Application," Energies, MDPI, vol. 14(15), pages 1-13, July.
    2. Jin-Soo Park, 2021. "Hydrogen-Based Energy Conversion: Polymer Electrolyte Fuel Cells and Electrolysis," Energies, MDPI, vol. 14(16), pages 1-2, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Das, Himadry Shekhar & Tan, Chee Wei & Yatim, A.H.M., 2017. "Fuel cell hybrid electric vehicles: A review on power conditioning units and topologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 268-291.
    2. A.M. Shakorfow & A.H. Mohamed, 2024. "Cogeneration Via Solid Oxide Fuel Cells," Acta Chemica Malaysia (ACMY), Zibeline International Publishing, vol. 8(2), pages 97-106, August.
    3. Nestor Sanchez & Ruth Yolanda Ruiz & Nicolas Infante & Martha Cobo, 2017. "Bioethanol Production from Cachaza as Hydrogen Feedstock: Effect of Ammonium Sulfate during Fermentation," Energies, MDPI, vol. 10(12), pages 1-16, December.
    4. Shaukat, N. & Ali, S.M. & Mehmood, C.A. & Khan, B. & Jawad, M. & Farid, U. & Ullah, Z. & Anwar, S.M. & Majid, M., 2018. "A survey on consumers empowerment, communication technologies, and renewable generation penetration within Smart Grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1453-1475.
    5. Zarabi Golkhatmi, Sanaz & Asghar, Muhammad Imran & Lund, Peter D., 2022. "A review on solid oxide fuel cell durability: Latest progress, mechanisms, and study tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    6. Li, Yong & Song, Jian & Yang, Jie, 2015. "Graphene models and nano-scale characterization technologies for fuel cell vehicle electrodes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 66-77.
    7. Vesselin Krassimirov Krastev & Giacomo Falcucci, 2018. "Simulating Engineering Flows through Complex Porous Media via the Lattice Boltzmann Method," Energies, MDPI, vol. 11(4), pages 1-14, March.
    8. Lin, Kuang C. & Lin, Yuan-Chung & Hsiao, Yi-Hsing, 2014. "Microwave plasma studies of Spirulina algae pyrolysis with relevance to hydrogen production," Energy, Elsevier, vol. 64(C), pages 567-574.
    9. Roberto Capata, 2018. "Urban and Extra-Urban Hybrid Vehicles: A Technological Review," Energies, MDPI, vol. 11(11), pages 1-38, October.
    10. Chino, Isabel & Hendrix, Kimberly & Keramati, Abtin & Muneeb, Omar & Haan, John L., 2019. "A split pH direct liquid fuel cell powered by propanol or glycerol," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    11. Mohamad Fairus Rabuni & Tao Li & Mohd Hafiz Dzarfan Othman & Faidzul Hakim Adnan & Kang Li, 2023. "Progress in Solid Oxide Fuel Cells with Hydrocarbon Fuels," Energies, MDPI, vol. 16(17), pages 1-36, September.
    12. Wajahat Ullah Khan Tareen & Muhammad Aamir & Saad Mekhilef & Mutsuo Nakaoka & Mehdi Seyedmahmoudian & Ben Horan & Mudasir Ahmed Memon & Nauman Anwar Baig, 2018. "Mitigation of Power Quality Issues Due to High Penetration of Renewable Energy Sources in Electric Grid Systems Using Three-Phase APF/STATCOM Technologies: A Review," Energies, MDPI, vol. 11(6), pages 1-41, June.
    13. Zeng, Zheng & Yang, Huan & Zhao, Rongxiang & Cheng, Chong, 2013. "Topologies and control strategies of multi-functional grid-connected inverters for power quality enhancement: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 223-270.
    14. Fiammetta Rita Bianchi & Barbara Bosio, 2021. "Operating Principles, Performance and Technology Readiness Level of Reversible Solid Oxide Cells," Sustainability, MDPI, vol. 13(9), pages 1-23, April.
    15. Nayeripour, Majid & Hoseintabar, Mohammad, 2013. "A new control strategy of solid oxide fuel cell based on coordination between hydrogen fuel flow rate and utilization factor," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 505-514.
    16. Abreham Tesfaye Besha & Misgina Tilahun Tsehaye & Girum Ayalneh Tiruye & Abaynesh Yihdego Gebreyohannes & Aymere Awoke & Ramato Ashu Tufa, 2020. "Deployable Membrane-Based Energy Technologies: the Ethiopian Prospect," Sustainability, MDPI, vol. 12(21), pages 1-33, October.
    17. Belqasem Aljafari & Subramanian Vasantharaj & Vairavasundaram Indragandhi & Rhanganath Vaibhav, 2022. "Optimization of DC, AC, and Hybrid AC/DC Microgrid-Based IoT Systems: A Review," Energies, MDPI, vol. 15(18), pages 1-30, September.
    18. Ingabire, Providence Buregeya & Pan, Xueting & Haragirimana, Alphonse & Li, Na & Hu, Zhaoxia & Chen, Shouwen, 2020. "Improved hydroxide conductivity and performance of nanocomposite membrane derived on quaternized polymers incorporated by titanium dioxide modified graphitic carbon nitride for fuel cells," Renewable Energy, Elsevier, vol. 152(C), pages 590-600.
    19. Pitchai Ragupathy & Santoshkumar Dattatray Bhat & Nallathamby Kalaiselvi, 2023. "Electrochemical energy storage and conversion: An overview," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 12(2), March.
    20. Ahmed Abdelhak Smadi & Farid Khoucha & Yassine Amirat & Abdeldjabar Benrabah & Mohamed Benbouzid, 2023. "Active Disturbance Rejection Control of an Interleaved High Gain DC-DC Boost Converter for Fuel Cell Applications," Energies, MDPI, vol. 16(3), pages 1-17, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:18:p:4761-:d:412541. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.