IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i17p4441-d405066.html
   My bibliography  Save this article

Analysis of Standby Losses and Charging Cycles in Flywheel Energy Storage Systems

Author

Listed:
  • Mustafa E. Amiryar

    (School of Mathematics, Computer Science and Engineering at City, University of London, London EC1V 0HB, UK)

  • Keith R. Pullen

    (School of Mathematics, Computer Science and Engineering at City, University of London, London EC1V 0HB, UK)

Abstract

Aerodynamic drag and bearing friction are the main sources of standby losses in the flywheel rotor part of a flywheel energy storage system (FESS). Although these losses are typically small in a well-designed system, the energy losses can become significant due to the continuous operation of the flywheel over time. For aerodynamic drag, commonly known as windage, there is scarcity of information available for loss estimation since most of the publications do not cover the partial vacuum conditions as required in the design of low loss energy storage flywheels. These conditions cause the flow regime to fall between continuum and molecular flow. Bearings may be of mechanical or magnetic type and in this paper the former is considered, typically hybridized with a passive magnetic thrust bearing. Mechanical bearing loss calculations have been extensively addressed in the open literature, including technical information from manufacturers but this has not previously been presented clearly and simply with reference to this application. The purpose of this paper is therefore to provide a loss assessment methodology for flywheel windage losses and bearing friction losses using the latest available information. An assessment of windage losses based on various flow regimes is presented with two different methods for calculation of windage losses in FESS under rarefied vacuum conditions discussed and compared. The findings of the research show that both methods closely correlate with each other for vacuum conditions typically required for flywheels. The effect of the air gap between the flywheel rotor and containment is also considered and justified for both calculation methods. Estimation of the bearing losses and considerations for selection of a low maintenance, soft mounted, bearing system is also discussed and analysed for a flywheel of realistic dimensions. The effect of the number of charging cycles on the relative importance of flywheel standby losses has also been investigated and the system total losses and efficiency have been calculated accordingly.

Suggested Citation

  • Mustafa E. Amiryar & Keith R. Pullen, 2020. "Analysis of Standby Losses and Charging Cycles in Flywheel Energy Storage Systems," Energies, MDPI, vol. 13(17), pages 1-22, August.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:17:p:4441-:d:405066
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/17/4441/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/17/4441/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mustafa E. Amiryar & Keith R. Pullen, 2019. "Assessment of the Carbon and Cost Savings of a Combined Diesel Generator, Solar Photovoltaic, and Flywheel Energy Storage Islanded Grid System," Energies, MDPI, vol. 12(17), pages 1-25, August.
    2. Suzuki, Y. & Koyanagi, A. & Kobayashi, M. & Shimada, R., 2005. "Novel applications of the flywheel energy storage system," Energy, Elsevier, vol. 30(11), pages 2128-2143.
    3. Dorfman, J.R. & Sengers, J.V. & McClure, C.F., 1986. "Kinetic theory of the drag force on objects in rarefied gas flows," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 134(2), pages 283-322.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng Gong & Shiwen Zhang & Feng Zhang & Jianguo Jiang & Xinheng Wang, 2014. "An Integrated Energy-Efficient Operation Methodology for Metro Systems Based on a Real Case of Shanghai Metro Line One," Energies, MDPI, vol. 7(11), pages 1-25, November.
    2. Abdul Ghani Olabi & Tabbi Wilberforce & Mohammad Ali Abdelkareem & Mohamad Ramadan, 2021. "Critical Review of Flywheel Energy Storage System," Energies, MDPI, vol. 14(8), pages 1-33, April.
    3. Boukettaya, Ghada & Krichen, Lotfi & Ouali, Abderrazak, 2010. "A comparative study of three different sensorless vector control strategies for a Flywheel Energy Storage System," Energy, Elsevier, vol. 35(1), pages 132-139.
    4. Rastegarzadeh, Sina & Mahzoon, Mojtaba & Mohammadi, Hossein, 2020. "A novel modular designing for multi-ring flywheel rotor to optimize energy consumption in light metro trains," Energy, Elsevier, vol. 206(C).
    5. Chatree Wattanasilp & Roongrojana Songprakorp & Annop Nopharatana & Charoenchai Khompatraporn, 2021. "Techno-Cost-Benefit Analysis of Biogas Production from Industrial Cassava Starch Wastewater in Thailand for Optimal Utilization with Energy Storage," Energies, MDPI, vol. 14(2), pages 1-22, January.
    6. Arani, A.A. Khodadoost & Karami, H. & Gharehpetian, G.B. & Hejazi, M.S.A., 2017. "Review of Flywheel Energy Storage Systems structures and applications in power systems and microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 9-18.
    7. Xiong, Fengjiao & Zhou, Debi & Xie, Zhipeng & Chen, Yunyang, 2012. "A study of the Ce3+/Ce4+ redox couple in sulfamic acid for redox battery application," Applied Energy, Elsevier, vol. 99(C), pages 291-296.
    8. Zhang, Shiyou & Peng, Keming & Wei, Wenlong & Tang, Siqi & Yao, Jin, 2021. "The matrix method of energy analysis and energy-saving design on the electromechanical system," Energy, Elsevier, vol. 224(C).
    9. José Luis Monroy-Morales & Rafael Peña-Alzola & David Campos-Gaona & Olimpo Anaya-Lara, 2022. "Complete Transitions of Hybrid Wind-Diesel Systems with Clutch and Flywheel-Based Energy Storage," Energies, MDPI, vol. 15(19), pages 1-18, September.
    10. Fei Lin & Shihui Liu & Zhihong Yang & Yingying Zhao & Zhongping Yang & Hu Sun, 2016. "Multi-Train Energy Saving for Maximum Usage of Regenerative Energy by Dwell Time Optimization in Urban Rail Transit Using Genetic Algorithm," Energies, MDPI, vol. 9(3), pages 1-21, March.
    11. Luo, Xing & Wang, Jihong & Dooner, Mark & Clarke, Jonathan, 2015. "Overview of current development in electrical energy storage technologies and the application potential in power system operation," Applied Energy, Elsevier, vol. 137(C), pages 511-536.
    12. Abid Soomro & Keith R. Pullen & Mustafa E. Amiryar, 2021. "Hybrid PV System with High Speed Flywheel Energy Storage for Remote Residential Loads," Clean Technol., MDPI, vol. 3(2), pages 1-26, April.
    13. Rachana Vidhi & Prasanna Shrivastava & Abhishek Parikh, 2021. "Social and Technological Impact of Businesses Surrounding Electric Vehicles," Clean Technol., MDPI, vol. 3(1), pages 1-17, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:17:p:4441-:d:405066. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.