IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i10p2608-d360888.html
   My bibliography  Save this article

Experimental and Numerical Analysis of a 10 MW Floating Offshore Wind Turbine in Regular Waves

Author

Listed:
  • Hyeonjeong Ahn

    (School of Naval Architecture and Ocean Engineering, University of Ulsan, Ulsan 44610, Korea)

  • Hyunkyoung Shin

    (School of Naval Architecture and Ocean Engineering, University of Ulsan, Ulsan 44610, Korea)

Abstract

Floating offshore wind turbines (FOWTs) experience fluctuations in their platforms, owing to the various wave and wind conditions. These fluctuations not only decrease the output of the wind power generation system, but also increase the fatigue load of the structure and various equipment mounted on it. Therefore, when designing FOWTs, efficient performance with respect to waves and other external conditions must be ensured. In this study, a model test was performed with a 10 MW floating offshore wind turbine. The model test was performed by scaling down a 10 MW FOWT model that was designed with reference to a 5 MW wind turbine and a semisubmersible platform by the National Renewable Energy Laboratory and the DeepCwind project. A scale ratio of 1:90 was used for the model test. The depth of the East Sea was considered as 144 m and, to match the water depth with the geometric similarity of mooring lines, mooring tables were installed. The load cases used in the model test are combined environmental conditions, which are combined uniform wind, regular waves and uniform current. Especially, Model tests with regular waves are especially necessary, because irregular waves are superpositions of regular waves with various periods. Therefore, this study aimed to understand the characteristics of the FOWTs caused by regular waves of various periods. Furthermore, in this model test, the effect of current was investigated using the current data of the East Sea. The results obtained through the model tests were the response amplitude operator (RAO) and the effective RAO for a six degrees-of-freedom motion. The results obtained from the model tests were compared with those obtained using the numerical simulation. The purpose of this paper is to predict the response of the entire system observed in model tests through simulation.

Suggested Citation

  • Hyeonjeong Ahn & Hyunkyoung Shin, 2020. "Experimental and Numerical Analysis of a 10 MW Floating Offshore Wind Turbine in Regular Waves," Energies, MDPI, vol. 13(10), pages 1-17, May.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:10:p:2608-:d:360888
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/10/2608/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/10/2608/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sessarego, Matias & Ramos-García, Néstor & Yang, Hua & Shen, Wen Zhong, 2016. "Aerodynamic wind-turbine rotor design using surrogate modeling and three-dimensional viscous–inviscid interaction technique," Renewable Energy, Elsevier, vol. 93(C), pages 620-635.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bonaventura Tagliafierro & Madjid Karimirad & Iván Martínez-Estévez & José M. Domínguez & Giacomo Viccione & Alejandro J. C. Crespo, 2022. "Numerical Assessment of a Tension-Leg Platform Wind Turbine in Intermediate Water Using the Smoothed Particle Hydrodynamics Method," Energies, MDPI, vol. 15(11), pages 1-23, May.
    2. Arabgolarcheh, Alireza & Micallef, Daniel & Benini, Ernesto, 2023. "The impact of platform motion phase differences on the power and load performance of tandem floating offshore wind turbines," Energy, Elsevier, vol. 284(C).
    3. Yang, Yang & Fu, Jianbin & Shi, Zhaobin & Ma, Lu & Yu, Jie & Fang, Fang & Chen, Shunhua & Lin, Zaibin & Li, Chun, 2023. "Performance and fatigue analysis of an integrated floating wind-current energy system considering the aero-hydro-servo-elastic coupling effects," Renewable Energy, Elsevier, vol. 216(C).
    4. Arabgolarcheh, Alireza & Micallef, Daniel & Rezaeiha, Abdolrahim & Benini, Ernesto, 2023. "Modelling of two tandem floating offshore wind turbines using an actuator line model," Renewable Energy, Elsevier, vol. 216(C).
    5. Ga-Eun Jung & Hae-Jin Sung & Minh-Chau Dinh & Minwon Park & Hyunkyoung Shin, 2021. "A Comparative Analysis of Economics of PMSG and SCSG Floating Offshore Wind Farms," Energies, MDPI, vol. 14(5), pages 1-18, March.
    6. Wang, Xinbao & Cai, Chang & Cai, Shang-Gui & Wang, Tengyuan & Wang, Zekun & Song, Juanjuan & Rong, Xiaomin & Li, Qing'an, 2023. "A review of aerodynamic and wake characteristics of floating offshore wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    7. Micallef, Daniel & Rezaeiha, Abdolrahim, 2021. "Floating offshore wind turbine aerodynamics: Trends and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    8. Youngjae Yu & Thanh Dam Pham & Hyunkyoung Shin & Kwangtae Ha, 2021. "Study on the Motion Characteristics of 10 MW Superconducting Floating Offshore Wind Turbine Considering 2nd Order Wave Effect," Energies, MDPI, vol. 14(19), pages 1-14, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sessarego, Matias & Feng, Ju & Ramos-García, Néstor & Horcas, Sergio González, 2020. "Design optimization of a curved wind turbine blade using neural networks and an aero-elastic vortex method under turbulent inflow," Renewable Energy, Elsevier, vol. 146(C), pages 1524-1535.
    2. Santhanam, Chandramouli & Riva, Riccardo & Knudsen, Torben, 2023. "A study of Stall-Induced Vibrations using Surrogate-Based Optimization," Renewable Energy, Elsevier, vol. 214(C), pages 201-215.
    3. Zhenye Sun & Matias Sessarego & Jin Chen & Wen Zhong Shen, 2017. "Design of the OffWindChina 5 MW Wind Turbine Rotor," Energies, MDPI, vol. 10(6), pages 1-20, June.
    4. Dai, Juchuan & Tan, Yayi & Shen, Xiangbin, 2019. "Investigation of energy output in mountain wind farm using multiple-units SCADA data," Applied Energy, Elsevier, vol. 239(C), pages 225-238.
    5. Yanfang Lv & Liping Sun & Michael M. Bernitsas & Mengjie Jiang & Hai Sun, 2021. "Modelling of a Flow-Induced Oscillation, Two-Cylinder, Hydrokinetic Energy Converter Based on Experimental Data," Energies, MDPI, vol. 14(4), pages 1-24, February.
    6. Zhiqiang Yang & Minghui Yin & Yan Xu & Yun Zou & Zhao Yang Dong & Qian Zhou, 2016. "Inverse Aerodynamic Optimization Considering Impacts of Design Tip Speed Ratio for Variable-Speed Wind Turbines," Energies, MDPI, vol. 9(12), pages 1-15, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:10:p:2608-:d:360888. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.