IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i10p2423-d357177.html
   My bibliography  Save this article

jBAY Modeling of Vane-Type Vortex Generators and Study on Airfoil Aerodynamic Performance

Author

Listed:
  • Sergio Chillon

    (Department of Nuclear and Fluid Mechanics, University of the Basque Country (UPV/EHU), Nieves Cano, 12, 01006 Vitoria-Gasteiz, Spain)

  • Antxon Uriarte-Uriarte

    (Department of Nuclear and Fluid Mechanics, University of the Basque Country (UPV/EHU), Nieves Cano, 12, 01006 Vitoria-Gasteiz, Spain)

  • Iñigo Aramendia

    (Department of Nuclear and Fluid Mechanics, University of the Basque Country (UPV/EHU), Nieves Cano, 12, 01006 Vitoria-Gasteiz, Spain)

  • Pablo Martínez-Filgueira

    (CS Centro Stirling S.Coop, Avenida Álava 3, 20550 Aretxabaleta, Spain)

  • Unai Fernandez-Gamiz

    (Department of Nuclear and Fluid Mechanics, University of the Basque Country (UPV/EHU), Nieves Cano, 12, 01006 Vitoria-Gasteiz, Spain)

  • Iosu Ibarra-Udaeta

    (Department of Nuclear and Fluid Mechanics, University of the Basque Country (UPV/EHU), Nieves Cano, 12, 01006 Vitoria-Gasteiz, Spain)

Abstract

The increased demand for wind power is related to changes in the sizes of wind turbines and the development of flow control devices, such as vortex generators (VGs). In the present study, an analysis of the vortices generated by a vane-type VG is performed. To that end, the aerodynamic performance of a DU97W300 airfoil with and without VG is evaluated. The jBAY source term model was implemented for simulation of a triangular-shaped VG and the resolution of the fully meshed computational fluid dynamics (CFD) model. Reynolds-averaged Navier–Stokes (RANS) based simulations were used to calculate the effect of VGs in steady state, and the detached eddy simulation (DES) method was used for angles of attack (AoAs) around the stall situation. All jBAY based numerical simulations were carried out with a Reynolds number of Re = 2 × 10 6 to analyze the influence of VGs with AoAs between 0 and 20° and were validated versus experimental wind tunnel results. The results show that setting up a VG device on an airfoil benefits its aerodynamic performance and that the use of the jBAY model for simulation is accurate and efficient.

Suggested Citation

  • Sergio Chillon & Antxon Uriarte-Uriarte & Iñigo Aramendia & Pablo Martínez-Filgueira & Unai Fernandez-Gamiz & Iosu Ibarra-Udaeta, 2020. "jBAY Modeling of Vane-Type Vortex Generators and Study on Airfoil Aerodynamic Performance," Energies, MDPI, vol. 13(10), pages 1-15, May.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:10:p:2423-:d:357177
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/10/2423/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/10/2423/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Houghton, T. & Bell, K.R.W. & Doquet, M., 2016. "Offshore transmission for wind: Comparing the economic benefits of different offshore network configurations," Renewable Energy, Elsevier, vol. 94(C), pages 268-279.
    2. Iñigo Errasti & Unai Fernández-Gamiz & Pablo Martínez-Filgueira & Jesús María Blanco, 2019. "Source Term Modelling of Vane-Type Vortex Generators under Adverse Pressure Gradient in OpenFOAM," Energies, MDPI, vol. 12(4), pages 1-21, February.
    3. Martin O. L. Hansen & Antonis Charalampous & Jean-Marc Foucaut & Christophe Cuvier & Clara M. Velte, 2019. "Validation of a Model for Estimating the Strength of a Vortex Created from the Bound Circulation of a Vortex Generator," Energies, MDPI, vol. 12(14), pages 1-14, July.
    4. Andrés Meana-Fernández & Jesús Manuel Fernández Oro & Katia María Argüelles Díaz & Sandra Velarde-Suárez, 2019. "Turbulence-Model Comparison for Aerodynamic-Performance Prediction of a Typical Vertical-Axis Wind-Turbine Airfoil," Energies, MDPI, vol. 12(3), pages 1-16, February.
    5. Gao, Linyue & Zhang, Hui & Liu, Yongqian & Han, Shuang, 2015. "Effects of vortex generators on a blunt trailing-edge airfoil for wind turbines," Renewable Energy, Elsevier, vol. 76(C), pages 303-311.
    6. Davide Astolfi & Francesco Castellani & Ludovico Terzi, 2018. "Wind Turbine Power Curve Upgrades," Energies, MDPI, vol. 11(5), pages 1-17, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Moon, Hyeongi & Jeong, Junhee & Park, Sunho & Ha, Kwangtae & Jeong, Jae-Ho, 2023. "Numerical and experimental validation of vortex generator effect on power performance improvement in MW-class wind turbine blade," Renewable Energy, Elsevier, vol. 212(C), pages 443-454.
    2. Alejandro Ballesteros-Coll & Unai Fernandez-Gamiz & Iñigo Aramendia & Ekaitz Zulueta & José Antonio Ramos-Hernanz, 2020. "Cell-Set Modelling for a Microtab Implementation on a DU91W(2)250 Airfoil," Energies, MDPI, vol. 13(24), pages 1-15, December.
    3. Alejandro Ballesteros-Coll & Unai Fernandez-Gamiz & Iñigo Aramendia & Ekaitz Zulueta & Jose Manuel Lopez-Guede, 2020. "Computational Methods for Modelling and Optimization of Flow Control Devices," Energies, MDPI, vol. 13(14), pages 1-15, July.
    4. José Luis Torres-Madroñero & Joham Alvarez-Montoya & Daniel Restrepo-Montoya & Jorge Mario Tamayo-Avendaño & César Nieto-Londoño & Julián Sierra-Pérez, 2020. "Technological and Operational Aspects That Limit Small Wind Turbines Performance," Energies, MDPI, vol. 13(22), pages 1-39, November.
    5. Alejandro Ballesteros-Coll & Koldo Portal-Porras & Unai Fernandez-Gamiz & Ekaitz Zulueta & Jose Manuel Lopez-Guede, 2021. "Rotating Microtab Implementation on a DU91W250 Airfoil Based on the Cell-Set Model," Sustainability, MDPI, vol. 13(16), pages 1-14, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Serdar GENÇ, Mustafa & KOCA, Kemal & AÇIKEL, Halil Hakan, 2019. "Investigation of pre-stall flow control on wind turbine blade airfoil using roughness element," Energy, Elsevier, vol. 176(C), pages 320-334.
    2. Zhaohuang Zhang & Weiwei Li, 2022. "Calculation of the Strength of Vortex Currents Induced by Vortex Generators on Flat Plates and the Evaluation of Their Performance," Energies, MDPI, vol. 15(7), pages 1-15, March.
    3. Unai Elosegui & Igor Egana & Alain Ulazia & Gabriel Ibarra-Berastegi, 2018. "Pitch Angle Misalignment Correction Based on Benchmarking and Laser Scanner Measurement in Wind Farms," Energies, MDPI, vol. 11(12), pages 1-20, December.
    4. Zhong, Junwei & Li, Jingyin & Liu, Huizhong, 2023. "Dynamic mode decomposition analysis of flow separation control on wind turbine airfoil using leading−edge rod," Energy, Elsevier, vol. 268(C).
    5. Bhavsar, Het & Roy, Sukanta & Niyas, Hakeem, 2023. "Aerodynamic performance enhancement of the DU99W405 airfoil for horizontal axis wind turbines using slotted airfoil configuration," Energy, Elsevier, vol. 263(PA).
    6. Md Zishan Akhter & Farag Khalifa Omar, 2021. "Review of Flow-Control Devices for Wind-Turbine Performance Enhancement," Energies, MDPI, vol. 14(5), pages 1-35, February.
    7. Davide Astolfi & Raymond Byrne & Francesco Castellani, 2021. "Estimation of the Performance Aging of the Vestas V52 Wind Turbine through Comparative Test Case Analysis," Energies, MDPI, vol. 14(4), pages 1-25, February.
    8. Zhicheng Lin & Song Zheng & Zhicheng Chen & Rong Zheng & Wang Zhang, 2019. "Application Research of the Parallel System Theory and the Data Engine Approach in Wind Energy Conversion System," Energies, MDPI, vol. 12(5), pages 1-20, March.
    9. Gorle, J.M.R. & Chatellier, L. & Pons, F. & Ba, M., 2019. "Modulated circulation control around the blades of a vertical axis hydrokinetic turbine for flow control and improved performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 363-377.
    10. Wenhui Huang & Lei Chen & Weijia Wang & Lijun Yang & Xiaoze Du, 2020. "Cooling Performance Optimization of Direct Dry Cooling System Based on Partition Adjustment of Axial Flow Fans," Energies, MDPI, vol. 13(12), pages 1-22, June.
    11. Raymond Byrne & Davide Astolfi & Francesco Castellani & Neil J. Hewitt, 2020. "A Study of Wind Turbine Performance Decline with Age through Operation Data Analysis," Energies, MDPI, vol. 13(8), pages 1-18, April.
    12. Davide Astolfi & Raymond Byrne & Francesco Castellani, 2020. "Analysis of Wind Turbine Aging through Operation Curves," Energies, MDPI, vol. 13(21), pages 1-21, October.
    13. Zhuang, Chen & Yang, Gang & Zhu, Yawei & Hu, Dean, 2020. "Effect of morphed trailing-edge flap on aerodynamic load control for a wind turbine blade section," Renewable Energy, Elsevier, vol. 148(C), pages 964-974.
    14. Tiago A. Antunes & Rui Castro & Paulo J. Santos & Armando J. Pires, 2023. "Standardization of Power-from-Shore Grid Connections for Offshore Oil & Gas Production," Sustainability, MDPI, vol. 15(6), pages 1-21, March.
    15. Sadik Kucuksari & Nuh Erdogan & Umit Cali, 2019. "Impact of Electrical Topology, Capacity Factor and Line Length on Economic Performance of Offshore Wind Investments," Energies, MDPI, vol. 12(16), pages 1-21, August.
    16. Manisha Sawant & Sameer Thakare & A. Prabhakara Rao & Andrés E. Feijóo-Lorenzo & Neeraj Dhanraj Bokde, 2021. "A Review on State-of-the-Art Reviews in Wind-Turbine- and Wind-Farm-Related Topics," Energies, MDPI, vol. 14(8), pages 1-30, April.
    17. Unai Fernandez-Gamiz & Macarena Gomez-Mármol & Tomas Chacón-Rebollo, 2018. "Computational Modeling of Gurney Flaps and Microtabs by POD Method," Energies, MDPI, vol. 11(8), pages 1-19, August.
    18. Ateekh Ur Rehman & Mustufa Haider Abidi & Usama Umer & Yusuf Siraj Usmani, 2019. "Multi-Criteria Decision-Making Approach for Selecting Wind Energy Power Plant Locations," Sustainability, MDPI, vol. 11(21), pages 1-20, November.
    19. Davide Astolfi & Francesco Castellani, 2019. "Wind Turbine Power Curve Upgrades: Part II," Energies, MDPI, vol. 12(8), pages 1-20, April.
    20. Iñigo Aramendia & Unai Fernandez-Gamiz & Ekaitz Zulueta & Aitor Saenz-Aguirre & Daniel Teso-Fz-Betoño, 2019. "Parametric Study of a Gurney Flap Implementation in a DU91W(2)250 Airfoil," Energies, MDPI, vol. 12(2), pages 1-14, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:10:p:2423-:d:357177. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.