IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i9p1706-d228535.html
   My bibliography  Save this article

Performance Analysis of Air and Oxy-Fuel Laminar Combustion in a Porous Plate Reactor

Author

Listed:
  • Furqan Tahir

    (Division of Sustainable Development (DSD), College of Science & Engineering (CSE), Hamad Bin Khalifa University (HBKU), Education City, Doha 34110, Qatar)

  • Haider Ali

    (Department of Mechanical Engineering, DHA Suffa University, Karachi 75500, Pakistan)

  • Ahmer A.B. Baloch

    (Division of Sustainable Development (DSD), College of Science & Engineering (CSE), Hamad Bin Khalifa University (HBKU), Education City, Doha 34110, Qatar)

  • Yasir Jamil

    (Department of Mechanical Engineering, King Fahd University of Petroleum & Minerals (KFUPM), Dhahran 31261, Saudi Arabia)

Abstract

Greenhouse gas emissions from the combustion of fossil fuels pose a serious threat to global warming. Mitigation measures to counter the exponential growth and harmful impact of these gases on the environment require techniques for the reduction and capturing of carbon. Oxy-fuel combustion is one such effective method, which is used for the carbon capture. In the present work, a numerical study was carried out to analyze characteristics of oxy-fuel combustion inside a porous plate reactor. The advantage of incorporating porous plates is to control local oxy-fuel ratio and to avoid hot spots inside the reactor. A modified two-steps reaction kinetics model was incorporated in the simulation for modeling of methane air-combustion and oxy-fuel combustion. Simulations were performed for different oxidizer ratios, mass flow rates, and reactor heights. Results showed that that oxy-combustion with an oxidizer ratio (OR) of 0.243 could have the same adiabatic flame temperature as that of air-combustion. It was found that not only does OR need to be changed, but also flow field or reactor dimensions should be changed to achieve similar combustion characteristics as that of air-combustion. Fifty percent higher mass flow rates or 40% reduction in reactor height may achieve comparable outlet temperature to air-combustion. It was concluded that not only does the oxidizer ratio of oxy-combustion need to be changed, but the velocity field is also required to be matched with air-combustion to attain similar outlet temperature.

Suggested Citation

  • Furqan Tahir & Haider Ali & Ahmer A.B. Baloch & Yasir Jamil, 2019. "Performance Analysis of Air and Oxy-Fuel Laminar Combustion in a Porous Plate Reactor," Energies, MDPI, vol. 12(9), pages 1-16, May.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:9:p:1706-:d:228535
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/9/1706/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/9/1706/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hong, Jongsup & Chaudhry, Gunaranjan & Brisson, J.G. & Field, Randall & Gazzino, Marco & Ghoniem, Ahmed F., 2009. "Analysis of oxy-fuel combustion power cycle utilizing a pressurized coal combustor," Energy, Elsevier, vol. 34(9), pages 1332-1340.
    2. Mansir, Ibrahim B. & Nemitallah, Medhat A. & Habib, Mohamed A. & Khalifa, Atia E., 2018. "Experimental and numerical investigation of flow field and oxy-methane combustion characteristics in a low-power porous-plate reactor," Energy, Elsevier, vol. 160(C), pages 783-795.
    3. Mao Li & Yiheng Tong & Marcus Thern & Jens Klingmann, 2017. "Investigation of Methane Oxy-Fuel Combustion in a Swirl-Stabilised Gas Turbine Model Combustor," Energies, MDPI, vol. 10(5), pages 1-16, May.
    4. Nemitallah, Medhat A. & Habib, Mohamed A., 2013. "Experimental and numerical investigations of an atmospheric diffusion oxy-combustion flame in a gas turbine model combustor," Applied Energy, Elsevier, vol. 111(C), pages 401-415.
    5. Kai Lei & Buqing Ye & Jin Cao & Rui Zhang & Dong Liu, 2017. "Combustion Characteristics of Single Particles from Bituminous Coal and Pine Sawdust in O 2 /N 2 , O 2 /CO 2 , and O 2 /H 2 O Atmospheres," Energies, MDPI, vol. 10(11), pages 1-12, October.
    6. Haisheng Zhen & Zhilong Wei & Zhenbin Chen, 2018. "Effect of N 2 Replacement by CO 2 in Coaxial-Flow on the Combustion and Emission of a Diffusion Flame," Energies, MDPI, vol. 11(5), pages 1-16, April.
    7. Janusz Zdeb & Natalia Howaniec & Adam Smoliński, 2019. "Utilization of Carbon Dioxide in Coal Gasification—An Experimental Study," Energies, MDPI, vol. 12(1), pages 1-12, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rashwan, Sherif S. & Ibrahim, Abdelmaged H. & Abou-Arab, Tharwat W. & Nemitallah, Medhat A. & Habib, Mohamed A., 2017. "Experimental study of atmospheric partially premixed oxy-combustion flames anchored over a perforated plate burner," Energy, Elsevier, vol. 122(C), pages 159-167.
    2. Hussain, Muzafar & Abdelhafez, Ahmed & Nemitallah, Medhat A. & Araoye, Abdulrazaq A. & Ben-Mansour, Rached & Habib, Mohamed A., 2020. "A highly diluted oxy-fuel micromixer combustor with hydrogen enrichment for enhancing turndown in gas turbines," Applied Energy, Elsevier, vol. 279(C).
    3. Abdelhafez, Ahmed & Rashwan, Sherif S. & Nemitallah, Medhat A. & Habib, Mohamed A., 2018. "Stability map and shape of premixed CH4/O2/CO2 flames in a model gas-turbine combustor," Applied Energy, Elsevier, vol. 215(C), pages 63-74.
    4. Yaser Khojasteh Salkuyeh & Thomas A. Adams II, 2015. "Co-Production of Olefins, Fuels, and Electricity from Conventional Pipeline Gas and Shale Gas with Near-Zero CO 2 Emissions. Part I: Process Development and Technical Performance," Energies, MDPI, vol. 8(5), pages 1-23, April.
    5. Smoliński, Adam & Howaniec, Natalia, 2023. "Experimental investigation and chemometric analysis of gasification and co-gasification of olive pomace and Sida Hermaphrodita blends with sewage sludge to hydrogen-rich gas," Energy, Elsevier, vol. 284(C).
    6. Gopan, Akshay & Kumfer, Benjamin M. & Phillips, Jeffrey & Thimsen, David & Smith, Richard & Axelbaum, Richard L., 2014. "Process design and performance analysis of a Staged, Pressurized Oxy-Combustion (SPOC) power plant for carbon capture," Applied Energy, Elsevier, vol. 125(C), pages 179-188.
    7. Enagi, Ibrahim I. & Al-attab, K.A. & Zainal, Z.A., 2018. "Liquid biofuels utilization for gas turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 43-55.
    8. Riaza, J. & Álvarez, L. & Gil, M.V. & Pevida, C. & Pis, J.J. & Rubiera, F., 2011. "Effect of oxy-fuel combustion with steam addition on coal ignition and burnout in an entrained flow reactor," Energy, Elsevier, vol. 36(8), pages 5314-5319.
    9. Lasek, Janusz A. & Janusz, Marcin & Zuwała, Jarosław & Głód, Krzysztof & Iluk, Andrzej, 2013. "Oxy-fuel combustion of selected solid fuels under atmospheric and elevated pressures," Energy, Elsevier, vol. 62(C), pages 105-112.
    10. Puig-Arnavat, Maria & Søgaard, Martin & Hjuler, Klaus & Ahrenfeldt, Jesper & Henriksen, Ulrik Birk & Hendriksen, Peter Vang, 2015. "Integration of oxygen membranes for oxygen production in cement plants," Energy, Elsevier, vol. 91(C), pages 852-865.
    11. Meng, William X. & Banerjee, Subhodeep & Zhang, Xiao & Agarwal, Ramesh K., 2015. "Process simulation of multi-stage chemical-looping combustion using Aspen Plus," Energy, Elsevier, vol. 90(P2), pages 1869-1877.
    12. Habib, Mohamed A. & Nemitallah, Medhat A., 2015. "Design of an ion transport membrane reactor for application in fire tube boilers," Energy, Elsevier, vol. 81(C), pages 787-801.
    13. Abdelhafez, Ahmed & Hussain, Muzafar & Nemitallah, Medhat A. & Habib, Mohamed A. & Ali, Asif, 2021. "Effects of jet diameter and spacing in a micromixer-like burner for clean oxy-fuel combustion in gas turbines," Energy, Elsevier, vol. 228(C).
    14. Zhang, Yongliang & Jin, Bo & Zou, Xixian & Zhao, Haibo, 2016. "A clean coal utilization technology based on coal pyrolysis and chemical looping with oxygen uncoupling: Principle and experimental validation," Energy, Elsevier, vol. 98(C), pages 181-189.
    15. Kim, Donghee & Yang, Won & Huh, Kang Y. & Lee, Youngjae, 2021. "Demonstration of 0.1 MWth pilot-scale pressurized oxy-fuel combustion for unpurified natural gas without CO2 dilution," Energy, Elsevier, vol. 223(C).
    16. Tyliszczak, Artur & Boguslawski, Andrzej & Nowak, Dariusz, 2016. "Numerical simulations of combustion process in a gas turbine with a single and multi-point fuel injection system," Applied Energy, Elsevier, vol. 174(C), pages 153-165.
    17. Mansir, Ibrahim B. & Nemitallah, Medhat A. & Habib, Mohamed A. & Khalifa, Atia E., 2018. "Experimental and numerical investigation of flow field and oxy-methane combustion characteristics in a low-power porous-plate reactor," Energy, Elsevier, vol. 160(C), pages 783-795.
    18. Tang, Yuting & Ma, Xiaoqian & Lai, Zhiyi & Zhou, Daoxi & Lin, Hai & Chen, Yong, 2012. "NOx and SO2 emissions from municipal solid waste (MSW) combustion in CO2/O2 atmosphere," Energy, Elsevier, vol. 40(1), pages 300-306.
    19. Mardani, A. & Fazlollahi Ghomshi, A., 2016. "Numerical study of oxy-fuel MILD (moderate or intense low-oxygen dilution combustion) combustion for CH4–H2 fuel," Energy, Elsevier, vol. 99(C), pages 136-151.
    20. Habib, Mohamed A. & Nemitallah, Medhat A. & Ahmed, Pervez & Sharqawy, Mostafa H. & Badr, Hassan M. & Muhammad, Inam & Yaqub, Mohamed, 2015. "Experimental analysis of oxygen-methane combustion inside a gas turbine reactor under various operating conditions," Energy, Elsevier, vol. 86(C), pages 105-114.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:9:p:1706-:d:228535. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.