IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i6p978-d213587.html
   My bibliography  Save this article

Thermodynamics and Kinetics of CO 2 /CH 4 Adsorption on Shale from China: Measurements and Modeling

Author

Listed:
  • Yuan Chi

    (Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy and Power Engineering, Dalian University of Technology, Dalian 116024, China)

  • Changzhong Zhao

    (Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy and Power Engineering, Dalian University of Technology, Dalian 116024, China)

  • Junchen Lv

    (Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy and Power Engineering, Dalian University of Technology, Dalian 116024, China)

  • Jiafei Zhao

    (Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy and Power Engineering, Dalian University of Technology, Dalian 116024, China)

  • Yi Zhang

    (Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy and Power Engineering, Dalian University of Technology, Dalian 116024, China)

Abstract

CO 2 -enhanced shale gas recovery (CO 2 -ESGR) sequestrates anthropogenic CO 2 and improves the profitability of shale gas exploitation. This work investigated the adsorption behaviors of CO 2 and CH 4 on shale from China at 20, 40, 60 and 80 °C. The pressure ranges for CO 2 and CH 4 were 1–5 and 1–15 MPa, respectively. The excess adsorbed amount of CH 4 increased with increasing pressure from the beginning to the end, while the maximum excess CO 2 adsorption was observed at approximately 4 MPa. The absolute average deviations (AADs) of CO 2 and CH 4 , determined by the Langmuir + k model, were 2.12–3.10% and 0.88–1.11%, respectively. Relatively good adsorptivity for CO 2 was exhibited when the pressure was less than 5 MPa, which was beneficial to the implementation of CO 2 -ESGR. With continuous increases in pressure, the adsorption capacity of CO 2 was weaker than that of CH 4 , suggesting that the injected CO 2 would reduce the partial pressure of CH 4 for CO 2 -ESGR and the displacement effect would no longer be significant. In addition, the adsorption rate of CO 2 was much faster than that of CH 4 . CO 2 was more active in the competitive adsorption and it was advantageous to the efficiency of CO 2 -ESGR.

Suggested Citation

  • Yuan Chi & Changzhong Zhao & Junchen Lv & Jiafei Zhao & Yi Zhang, 2019. "Thermodynamics and Kinetics of CO 2 /CH 4 Adsorption on Shale from China: Measurements and Modeling," Energies, MDPI, vol. 12(6), pages 1-13, March.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:6:p:978-:d:213587
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/6/978/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/6/978/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Song, Yongchen & Cheng, Chuanxiao & Zhao, Jiafei & Zhu, Zihao & Liu, Weiguo & Yang, Mingjun & Xue, Kaihua, 2015. "Evaluation of gas production from methane hydrates using depressurization, thermal stimulation and combined methods," Applied Energy, Elsevier, vol. 145(C), pages 265-277.
    2. Yang, Mingjun & Zheng, Jianan & Liu, Weiguo & Liu, Yu & Song, Yongchen, 2015. "Effects of C3H8 on hydrate formation and dissociation for integrated CO2 capture and desalination technology," Energy, Elsevier, vol. 93(P2), pages 1971-1979.
    3. Yang, Mingjun & Chong, Zheng Rong & Zheng, Jianan & Song, Yongchen & Linga, Praveen, 2017. "Advances in nuclear magnetic resonance (NMR) techniques for the investigation of clathrate hydrates," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1346-1360.
    4. Zhao, Jiafei & Yu, Tao & Song, Yongchen & Liu, Di & Liu, Weiguo & Liu, Yu & Yang, Mingjun & Ruan, Xuke & Li, Yanghui, 2013. "Numerical simulation of gas production from hydrate deposits using a single vertical well by depressurization in the Qilian Mountain permafrost, Qinghai-Tibet Plateau, China," Energy, Elsevier, vol. 52(C), pages 308-319.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wenxiao Chu & Maria Vicidomini & Francesco Calise & Neven Duić & Poul Alborg Østergaard & Qiuwang Wang & Maria da Graça Carvalho, 2022. "Recent Advances in Low-Carbon and Sustainable, Efficient Technology: Strategies and Applications," Energies, MDPI, vol. 15(8), pages 1-30, April.
    2. Xie, Weidong & Wang, Hua & Vandeginste, Veerle & Chen, Si & Gan, Huajun & Wang, Meng & Yu, Zhenghong, 2023. "Thermodynamic and kinetic affinity of CO2 relative to CH4 and their pressure, temperature and pore structure sensitivity in the competitive adsorption system in shale gas reservoirs," Energy, Elsevier, vol. 277(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Shihui & Zheng, Jia-nan & Tang, Dawei & Lv, Xin & Li, Qingping & Yang, Mingjun, 2019. "Experimental investigation on the decomposition characteristics of natural gas hydrates in South China Sea sediments by a micro-differential scanning calorimeter," Applied Energy, Elsevier, vol. 254(C).
    2. Wang, Yi & Feng, Jing-Chun & Li, Xiao-Sen & Zhang, Yu & Li, Gang, 2016. "Large scale experimental evaluation to methane hydrate dissociation below quadruple point in sandy sediment," Applied Energy, Elsevier, vol. 162(C), pages 372-381.
    3. Mok, Junghoon & Choi, Wonjung & Seo, Yongwon, 2021. "The dual-functional roles of N2 gas for the exploitation of natural gas hydrates: An inhibitor for dissociation and an external guest for replacement," Energy, Elsevier, vol. 232(C).
    4. Yu, Tao & Guan, Guoqing & Abudula, Abuliti & Wang, Dayong & Song, Yongchen, 2021. "Numerical evaluation of free gas accumulation behavior in a reservoir during methane hydrate production using a multiple-well system," Energy, Elsevier, vol. 218(C).
    5. Minghao Yu & Weizhong Li & Bo Dong & Cong Chen & Xin Wang, 2018. "Simulation for the Effects of Well Pressure and Initial Temperature on Methane Hydrate Dissociation," Energies, MDPI, vol. 11(5), pages 1-13, May.
    6. Li, Bo & Liang, Yun-Pei & Li, Xiao-Sen & Zhou, Lei, 2016. "A pilot-scale study of gas production from hydrate deposits with two-spot horizontal well system," Applied Energy, Elsevier, vol. 176(C), pages 12-21.
    7. Chong, Zheng Rong & Zhao, Jianzhong & Chan, Jian Hua Rudi & Yin, Zhenyuan & Linga, Praveen, 2018. "Effect of horizontal wellbore on the production behavior from marine hydrate bearing sediment," Applied Energy, Elsevier, vol. 214(C), pages 117-130.
    8. Yu, Tao & Guan, Guoqing & Abudula, Abuliti, 2019. "Production performance and numerical investigation of the 2017 offshore methane hydrate production test in the Nankai Trough of Japan," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    9. Chen, Ye & Gao, Yonghai & Zhao, Yipeng & Chen, Litao & Dong, Changyin & Sun, Baojiang, 2018. "Experimental investigation of different factors influencing the replacement efficiency of CO2 for methane hydrate," Applied Energy, Elsevier, vol. 228(C), pages 309-316.
    10. Yang, Mingjun & Zheng, Jia-nan & Gao, Yi & Ma, Zhanquan & Lv, Xin & Song, Yongchen, 2019. "Dissociation characteristics of methane hydrates in South China Sea sediments by depressurization," Applied Energy, Elsevier, vol. 243(C), pages 266-273.
    11. Feng, Jing-Chun & Wang, Yi & Li, Xiao-Sen & Li, Gang & Zhang, Yu, 2015. "Three dimensional experimental and numerical investigations into hydrate dissociation in sandy reservoir with dual horizontal wells," Energy, Elsevier, vol. 90(P1), pages 836-845.
    12. Yang, Lei & Ai, Li & Xue, Kaihua & Ling, Zheng & Li, Yanghui, 2018. "Analyzing the effects of inhomogeneity on the permeability of porous media containing methane hydrates through pore network models combined with CT observation," Energy, Elsevier, vol. 163(C), pages 27-37.
    13. Yuan Chi & Shuyang Liu & Weiwei Jian & Changzhong Zhao & Junchen Lv & Yi Zhang, 2020. "The density characteristics of CO2 and alkane mixtures using PC‐SAFT EoS," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(5), pages 1063-1076, October.
    14. Liu, Weiguo & Wu, Zhaoran & Li, Jiajie & Zheng, Jianan & Li, Yanghui, 2020. "The seepage characteristics of methane hydrate-bearing clayey sediments under various pressure gradients," Energy, Elsevier, vol. 191(C).
    15. Wu, Zhaoran & Li, Yanghui & Sun, Xiang & Wu, Peng & Zheng, Jianan, 2018. "Experimental study on the effect of methane hydrate decomposition on gas phase permeability of clayey sediments," Applied Energy, Elsevier, vol. 230(C), pages 1304-1310.
    16. Wang, Bin & Fan, Zhen & Zhao, Jiafei & Lv, Xin & Pang, Weixin & Li, Qingping, 2018. "Influence of intrinsic permeability of reservoir rocks on gas recovery from hydrate deposits via a combined depressurization and thermal stimulation approach," Applied Energy, Elsevier, vol. 229(C), pages 858-871.
    17. Chong, Zheng Rong & Yin, Zhenyuan & Tan, Jun Hao Clifton & Linga, Praveen, 2017. "Experimental investigations on energy recovery from water-saturated hydrate bearing sediments via depressurization approach," Applied Energy, Elsevier, vol. 204(C), pages 1513-1525.
    18. Cheng, Chuanxiao & Lai, Zhengxiang & Jin, Tingxiang & Jing, Zhiyong & Geng, Wangning & Qi, Tian & Zhu, Shiquan & Zhang, Jun & Liu, Jianxiu & Wang, Fan & Dong, Hongsheng & Zhang, Lunxiang, 2022. "Rapid nucleation and growth of tetrafluoroethane hydrate in the cyclic process of boiling–condensation," Energy, Elsevier, vol. 256(C).
    19. Chen, Siyuan & Wang, Yanhong & Lang, Xuemei & Fan, Shuanshi & Li, Gang, 2023. "Rapid and high hydrogen storage in epoxycyclopentane hydrate at moderate pressure," Energy, Elsevier, vol. 268(C).
    20. Wang, Yi & Feng, Jing-Chun & Li, Xiao-Sen & Zhang, Yu, 2018. "Influence of well pattern on gas recovery from methane hydrate reservoir by large scale experimental investigation," Energy, Elsevier, vol. 152(C), pages 34-45.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:6:p:978-:d:213587. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.