IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i4p672-d207291.html
   My bibliography  Save this article

On the Variation of Turbulence in a High-Velocity Tidal Channel

Author

Listed:
  • Charles Greenwood

    (Marine Energy Research Group, Lews Castle College, University of the Highlands and Islands, Stornoway HS2 0XR, UK)

  • Arne Vogler

    (Marine Energy Research Group, Lews Castle College, University of the Highlands and Islands, Stornoway HS2 0XR, UK)

  • Vengatesan Venugopal

    (Institute for Energy Systems, School of Engineering, The University of Edinburgh, Edinburgh EH9 3DW, UK)

Abstract

This study presents the variation in turbulence parameters derived from site measurements at a tidal energy test site. Measurements were made towards the southern end of the European Marine Energy Centre’s tidal energy test site at the Fall of Warness (Orkney, Scotland). Four bottom mounted divergent-beam Acoustic Doppler Current Profilers (ADCPs) were deployed at three locations over an area of 2 km by 1.4 km to assess the spatial and temporal variation in turbulence in the southern entrance to the channel. During the measurement campaign, average flood velocities of 2 ms −1 were recorded with maximum flow speeds of 3 ms −1 in the absence of significant wave activity. The velocity fluctuations and turbulence parameters show the presence of large turbulent structures at each location. The easternmost profiler located in the wake of a nearby headland during ebb tide, recorded flow shielding effects that reduced velocities to almost zero and produced large turbulence intensities. The depth-dependent analysis of turbulence parameters reveals large velocity variations with complex profiles that do not follow the standard smooth shear profile. Furthermore, turbulence parameters based on data collected from ADCPs deployed in a multi-carrier frame at the same location and time period, show significant differences. This shows a large sensitivity to the make and model of ADCPs with regards to turbulence. Turbulence integral length scales were calculated, and show eddies exceeding 30 m in size. Direct comparison of the length scales derived from the streamwise velocity component and along-beam velocities show very similar magnitudes and distributions with tidal phase.

Suggested Citation

  • Charles Greenwood & Arne Vogler & Vengatesan Venugopal, 2019. "On the Variation of Turbulence in a High-Velocity Tidal Channel," Energies, MDPI, vol. 12(4), pages 1-21, February.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:4:p:672-:d:207291
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/4/672/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/4/672/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Horwitz, Rachel M. & Hay, Alex E., 2017. "Turbulence dissipation rates from horizontal velocity profiles at mid-depth in fast tidal flows," Renewable Energy, Elsevier, vol. 114(PA), pages 283-296.
    2. Brian G. Sellar & Gareth Wakelam & Duncan R. J. Sutherland & David M. Ingram & Vengatesan Venugopal, 2018. "Characterisation of Tidal Flows at the European Marine Energy Centre in the Absence of Ocean Waves," Energies, MDPI, vol. 11(1), pages 1-23, January.
    3. Bouferrouk, Abdessalem & Hardwick, Jonathan P. & Colucci, Antonella M. & Johanning, Lars, 2016. "Quantifying turbulence from field measurements at a mixed low tidal energy site," Renewable Energy, Elsevier, vol. 87(P1), pages 478-492.
    4. Milne, I.A. & Day, A.H. & Sharma, R.N. & Flay, R.G.J., 2016. "The characterisation of the hydrodynamic loads on tidal turbines due to turbulence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 851-864.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chuhua Jiang & Xuedao Shu & Junhua Chen & Lingjie Bao & Yawen Xu, 2021. "Research on Blade Design of Lift–Drag-Composite Tidal-Energy Turbine at Low Flow Velocity," Energies, MDPI, vol. 14(14), pages 1-16, July.
    2. Perez, Larissa & Cossu, Remo & Grinham, Alistair & Penesis, Irene, 2021. "Seasonality of turbulence characteristics and wave-current interaction in two prospective tidal energy sites," Renewable Energy, Elsevier, vol. 178(C), pages 1322-1336.
    3. Fowell, R. & Togneri, M. & Pacheco, A. & Nourrisson, O., 2022. "Use of an environmental proxy to determine turbulence regime surrounding a full-scale tidal turbine deployed within the Fromveur Strait, Brittany, France," Applied Energy, Elsevier, vol. 326(C).
    4. Alyona Naberezhnykh & David Ingram & Ian Ashton & Joel Culina, 2023. "How Applicable Are Turbulence Assumptions Used in the Tidal Energy Industry?," Energies, MDPI, vol. 16(4), pages 1-21, February.
    5. Larissa Perez & Remo Cossu & Camille Couzi & Irene Penesis, 2020. "Wave-Turbulence Decomposition Methods Applied to Tidal Energy Site Assessment," Energies, MDPI, vol. 13(5), pages 1-21, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Draycott, S. & Sellar, B. & Davey, T. & Noble, D.R. & Venugopal, V. & Ingram, D.M., 2019. "Capture and simulation of the ocean environment for offshore renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 15-29.
    2. Perez, Larissa & Cossu, Remo & Grinham, Alistair & Penesis, Irene, 2021. "Seasonality of turbulence characteristics and wave-current interaction in two prospective tidal energy sites," Renewable Energy, Elsevier, vol. 178(C), pages 1322-1336.
    3. Scarlett, Gabriel Thomas & Sellar, Brian & van den Bremer, Ton & Viola, Ignazio Maria, 2019. "Unsteady hydrodynamics of a full-scale tidal turbine operating in large wave conditions," Renewable Energy, Elsevier, vol. 143(C), pages 199-213.
    4. Cossu, Remo & Penesis, Irene & Nader, Jean-Roch & Marsh, Philip & Perez, Larissa & Couzi, Camille & Grinham, Alistair & Osman, Peter, 2021. "Tidal energy site characterisation in a large tidal channel in Banks Strait, Tasmania, Australia," Renewable Energy, Elsevier, vol. 177(C), pages 859-870.
    5. Thomas Scarlett, Gabriel & Viola, Ignazio Maria, 2020. "Unsteady hydrodynamics of tidal turbine blades," Renewable Energy, Elsevier, vol. 146(C), pages 843-855.
    6. Larissa Perez & Remo Cossu & Camille Couzi & Irene Penesis, 2020. "Wave-Turbulence Decomposition Methods Applied to Tidal Energy Site Assessment," Energies, MDPI, vol. 13(5), pages 1-21, March.
    7. Alyona Naberezhnykh & David Ingram & Ian Ashton & Joel Culina, 2023. "How Applicable Are Turbulence Assumptions Used in the Tidal Energy Industry?," Energies, MDPI, vol. 16(4), pages 1-21, February.
    8. Christelle Auguste & Philip Marsh & Jean-Roch Nader & Remo Cossu & Irene Penesis, 2020. "Towards a Tidal Farm in Banks Strait, Tasmania: Influence of Tidal Array on Hydrodynamics," Energies, MDPI, vol. 13(20), pages 1-22, October.
    9. Zhang, Yidan & Shek, Jonathan K.H. & Mueller, Markus A., 2023. "Controller design for a tidal turbine array, considering both power and loads aspects," Renewable Energy, Elsevier, vol. 216(C).
    10. Verbeek, M.C. & Labeur, R.J. & Uijttewaal, W.S.J., 2021. "The performance of a weir-mounted tidal turbine: An experimental investigation," Renewable Energy, Elsevier, vol. 168(C), pages 64-75.
    11. Garcia Novo, Patxi & Kyozuka, Yusaku, 2020. "Validation of a turbulence numerical 3D model for an open channel with strong tidal currents," Renewable Energy, Elsevier, vol. 162(C), pages 993-1004.
    12. Fowell, R. & Togneri, M. & Pacheco, A. & Nourrisson, O., 2022. "Use of an environmental proxy to determine turbulence regime surrounding a full-scale tidal turbine deployed within the Fromveur Strait, Brittany, France," Applied Energy, Elsevier, vol. 326(C).
    13. Mujahid Badshah & Saeed Badshah & James VanZwieten & Sakhi Jan & Muhammad Amir & Suheel Abdullah Malik, 2019. "Coupled Fluid-Structure Interaction Modelling of Loads Variation and Fatigue Life of a Full-Scale Tidal Turbine under the Effect of Velocity Profile," Energies, MDPI, vol. 12(11), pages 1-22, June.
    14. Ewing, Fraser J. & Thies, Philipp R. & Shek, Jonathan & Ferreira, Claudio Bittencourt, 2020. "Probabilistic failure rate model of a tidal turbine pitch system," Renewable Energy, Elsevier, vol. 160(C), pages 987-997.
    15. Gambuzza, Stefano & Pisetta, Gabriele & Davey, Thomas & Steynor, Jeffrey & Viola, Ignazio Maria, 2023. "Model-scale experiments of passive pitch control for tidal turbines," Renewable Energy, Elsevier, vol. 205(C), pages 10-29.
    16. Lam, Raymond & Dubon, Sergio Lopez & Sellar, Brian & Vogel, Christopher & Davey, Thomas & Steynor, Jeffrey, 2023. "Temporal and spatial characterisation of tidal blade load variation for structural fatigue testing," Renewable Energy, Elsevier, vol. 208(C), pages 665-678.
    17. Lande-Sudall, D. & Stallard, T. & Stansby, P., 2019. "Co-located deployment of offshore wind turbines with tidal stream turbine arrays for improved cost of electricity generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 492-503.
    18. Perez, Larissa & Cossu, Remo & Grinham, Alistair & Penesis, Irene, 2022. "An investigation of tidal turbine performance and loads under various turbulence conditions using Blade Element Momentum theory and high-frequency field data acquired in two prospective tidal energy s," Renewable Energy, Elsevier, vol. 201(P1), pages 928-937.
    19. Faisal Wani & Udai Shipurkar & Jianning Dong & Henk Polinder, 2021. "Thermal Cycling in Converter IGBT Modules with Different Cooling Systems in Pitch- and Active Stall-Controlled Tidal Turbines," Energies, MDPI, vol. 14(20), pages 1-25, October.
    20. Perez, Larissa & Cossu, Remo & Grinham, Alistair & Penesis, Irene, 2022. "Tidal turbine performance and loads for various hub heights and wave conditions using high-frequency field measurements and Blade Element Momentum theory," Renewable Energy, Elsevier, vol. 200(C), pages 1548-1560.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:4:p:672-:d:207291. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.