IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i3p447-d202187.html
   My bibliography  Save this article

A Rare-Earth Free Magnetically Geared Generator for Direct-Drive Wind Turbines

Author

Listed:
  • Reza Zeinali

    (Electrical and Electronics Engineering, Middle East Technical University (METU), Ankara 06800, Turkey)

  • Ozan Keysan

    (Electrical and Electronics Engineering, Middle East Technical University (METU), Ankara 06800, Turkey)

Abstract

A novel Vernier type magnetically geared direct-drive generator for large wind turbines is introduced in this paper. Conventional Vernier-type machines and most of the direct-drive wind turbine generators use excessive amount of permanent magnet, which increases the overall cost and makes the manufacturing process challenging. In this paper, an electrically excited (PM_less) claw-pole type Vernier machine is presented. This new topology has the potential of reducing mass and cost of the generator, and can make the construction easy in manufacturing and handling. Analytical designs are verified using 3D finite-element simulations and several designs are evaluated to find the optimum design for a 7.5 MW, 12 rpm wind turbine application. It is shown, that the required torque can be achieved with an outer diameter of 7.5 m, and with a mass of 172 t (including the structural mass). The proposed generator is compared with commercial direct-drive generators, and it is found that the proposed generator has the highest torque density with 34.7 kNm/t.

Suggested Citation

  • Reza Zeinali & Ozan Keysan, 2019. "A Rare-Earth Free Magnetically Geared Generator for Direct-Drive Wind Turbines," Energies, MDPI, vol. 12(3), pages 1-15, January.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:3:p:447-:d:202187
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/3/447/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/3/447/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Riba, Jordi-Roger & López-Torres, Carlos & Romeral, Luís & Garcia, Antoni, 2016. "Rare-earth-free propulsion motors for electric vehicles: A technology review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 367-379.
    2. Chengcheng Liu & Jiawei Lu & Youhua Wang & Gang Lei & Jianguo Zhu & Youguang Guo, 2018. "Design Issues for Claw Pole Machines with Soft Magnetic Composite Cores," Energies, MDPI, vol. 11(8), pages 1-15, August.
    3. Bilgili, Mehmet & Yasar, Abdulkadir & Simsek, Erdogan, 2011. "Offshore wind power development in Europe and its comparison with onshore counterpart," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 905-915, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Khalil Touimi & Mohamed Benbouzid & Zhe Chen, 2020. "Optimal Design of a Multibrid Permanent Magnet Generator for a Tidal Stream Turbine," Energies, MDPI, vol. 13(2), pages 1-19, January.
    2. Gerardo Ruiz-Ponce & Marco A. Arjona & Concepcion Hernandez & Rafael Escarela-Perez, 2023. "A Review of Magnetic Gear Technologies Used in Mechanical Power Transmission," Energies, MDPI, vol. 16(4), pages 1-32, February.
    3. Anna Przybył & Piotr Gębara & Roman Gozdur & Krzysztof Chwastek, 2022. "Modeling of Magnetic Properties of Rare-Earth Hard Magnets," Energies, MDPI, vol. 15(21), pages 1-18, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amirinia, Gholamreza & Mafi, Somayeh & Mazaheri, Said, 2017. "Offshore wind resource assessment of Persian Gulf using uncertainty analysis and GIS," Renewable Energy, Elsevier, vol. 113(C), pages 915-929.
    2. Sun, Xiaojing & Huang, Diangui & Wu, Guoqing, 2012. "The current state of offshore wind energy technology development," Energy, Elsevier, vol. 41(1), pages 298-312.
    3. Xin Ba & Zhenjie Gong & Youguang Guo & Chengning Zhang & Jianguo Zhu, 2022. "Development of Equivalent Circuit Models of Permanent Magnet Synchronous Motors Considering Core Loss," Energies, MDPI, vol. 15(6), pages 1-18, March.
    4. Bonou, Alexandra & Laurent, Alexis & Olsen, Stig I., 2016. "Life cycle assessment of onshore and offshore wind energy-from theory to application," Applied Energy, Elsevier, vol. 180(C), pages 327-337.
    5. Markel Fernandez & Andres Sierra-Gonzalez & Endika Robles & Iñigo Kortabarria & Edorta Ibarra & Jose Luis Martin, 2020. "New Modulation Technique to Mitigate Common Mode Voltage Effects in Star-Connected Five-Phase AC Drives," Energies, MDPI, vol. 13(3), pages 1-19, January.
    6. Pasquale Contestabile & Enrico Di Lauro & Paolo Galli & Cesare Corselli & Diego Vicinanza, 2017. "Offshore Wind and Wave Energy Assessment around Malè and Magoodhoo Island (Maldives)," Sustainability, MDPI, vol. 9(4), pages 1-24, April.
    7. Kamila Pronińska & Krzysztof Księżopolski, 2021. "Baltic Offshore Wind Energy Development—Poland’s Public Policy Tools Analysis and the Geostrategic Implications," Energies, MDPI, vol. 14(16), pages 1-17, August.
    8. Christoffer Hallgren & Johan Arnqvist & Stefan Ivanell & Heiner Körnich & Ville Vakkari & Erik Sahlée, 2020. "Looking for an Offshore Low-Level Jet Champion among Recent Reanalyses: A Tight Race over the Baltic Sea," Energies, MDPI, vol. 13(14), pages 1-26, July.
    9. Gallagher, Sarah & Tiron, Roxana & Whelan, Eoin & Gleeson, Emily & Dias, Frédéric & McGrath, Ray, 2016. "The nearshore wind and wave energy potential of Ireland: A high resolution assessment of availability and accessibility," Renewable Energy, Elsevier, vol. 88(C), pages 494-516.
    10. Ling, Yu & Cai, Xu, 2012. "Exploitation and utilization of the wind power and its perspective in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2111-2117.
    11. Shu, Z.R. & Li, Q.S. & Chan, P.W., 2015. "Investigation of offshore wind energy potential in Hong Kong based on Weibull distribution function," Applied Energy, Elsevier, vol. 156(C), pages 362-373.
    12. Kern, Florian & Smith, Adrian & Shaw, Chris & Raven, Rob & Verhees, Bram, 2014. "From laggard to leader: Explaining offshore wind developments in the UK," Energy Policy, Elsevier, vol. 69(C), pages 635-646.
    13. Cha, Kyoung-Soo & Kim, Dong-Min & Jung, Young-Hoon & Lim, Myung-Seop, 2020. "Wound field synchronous motor with hybrid circuit for neighborhood electric vehicle traction improving fuel economy," Applied Energy, Elsevier, vol. 263(C).
    14. Yujun Shi & Linni Jian, 2018. "A Novel Dual-Permanent-Magnet-Excited Machine with Flux Strengthening Effect for Low-Speed Large-Torque Applications," Energies, MDPI, vol. 11(1), pages 1-17, January.
    15. Ewa Chomać-Pierzecka & Anna Sobczak & Dariusz Soboń, 2022. "Wind Energy Market in Poland in the Background of the Baltic Sea Bordering Countries in the Era of the COVID-19 Pandemic," Energies, MDPI, vol. 15(7), pages 1-21, March.
    16. Bilgili, Mehmet & Ozbek, Arif & Sahin, Besir & Kahraman, Ali, 2015. "An overview of renewable electric power capacity and progress in new technologies in the world," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 323-334.
    17. Wen, Jianping & Zhao, Dan & Zhang, Chuanwei, 2020. "An overview of electricity powered vehicles: Lithium-ion battery energy storage density and energy conversion efficiency," Renewable Energy, Elsevier, vol. 162(C), pages 1629-1648.
    18. Ma, Shuai & Lin, Meng & Lin, Tzu-En & Lan, Tian & Liao, Xun & Maréchal, François & Van herle, Jan & Yang, Yongping & Dong, Changqing & Wang, Ligang, 2021. "Fuel cell-battery hybrid systems for mobility and off-grid applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    19. Yeongmin Kim & Wongee Chun & Kuan Chen, 2017. "Thermal-Flow Analysis of a Simple LTD (Low-Temperature-Differential) Heat Engine," Energies, MDPI, vol. 10(4), pages 1-16, April.
    20. Feng, Qiang & Zhao, Xiujie & Fan, Dongming & Cai, Baoping & Liu, Yiqi & Ren, Yi, 2019. "Resilience design method based on meta-structure: A case study of offshore wind farm," Reliability Engineering and System Safety, Elsevier, vol. 186(C), pages 232-244.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:3:p:447-:d:202187. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.