IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i21p4093-d280630.html
   My bibliography  Save this article

Control for Three-Phase LCL-Filter PWM Rectifier with BESS-Oriented Application

Author

Listed:
  • Dante Mora

    (Faculty of Engineering, University of San Luis Potosí, San Luis Potosí 78290, Mexico)

  • Ciro Núñez

    (Faculty of Engineering, University of San Luis Potosí, San Luis Potosí 78290, Mexico)

  • Nancy Visairo

    (Faculty of Engineering, University of San Luis Potosí, San Luis Potosí 78290, Mexico)

  • Juan Segundo

    (Faculty of Engineering, University of San Luis Potosí, San Luis Potosí 78290, Mexico)

  • Eugenio Camargo

    (Faculty of Engineering, University of San Luis Potosí, San Luis Potosí 78290, Mexico)

Abstract

This paper deals with a battery energy storage system (BESS) in only one of its multiple operating modes, that is when the BESS is charging the battery bank and with the focus on the control scheme design for the BESS input stage, which is a three-phase LCL-filter PWM rectifier. The rectifier’s main requirements comprise output voltage regulation, power factor control, and low input current harmonic distortion, even in the presence of input voltage variations. Typically, these objectives are modeled by using a dq model with its corresponding two-loop controller architecture, including an outer voltage loop and a current internal loop. This paper outlines an alternative approach to tackle the problem by using not only an input–output map linearization controller, with the aim of a single-loop current control, but also by avoiding the dq modeling. In this case, the voltage is indirectly controlled by computing the current references based on the converter power balance. The mathematical model of the three-phase LCL-filter PWM rectifier is defined based on the delta connection of the filter, which accomplishes the requirements of a 100 kW BESS module. Extensive simulation results are included to confirm the performance of the proposed closed-loop control in practical applications.

Suggested Citation

  • Dante Mora & Ciro Núñez & Nancy Visairo & Juan Segundo & Eugenio Camargo, 2019. "Control for Three-Phase LCL-Filter PWM Rectifier with BESS-Oriented Application," Energies, MDPI, vol. 12(21), pages 1-17, October.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:21:p:4093-:d:280630
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/21/4093/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/21/4093/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rui Hou & Thai-Thanh Nguyen & Hak-Man Kim & Huihui Song & Yanbin Qu, 2017. "An Energy-Based Control Strategy for Battery Energy Storage Systems: A Case Study on Microgrid Applications," Energies, MDPI, vol. 10(2), pages 1-20, February.
    2. Marwa Ben Said-Romdhane & Mohamed Wissem Naouar & Ilhem Slama Belkhodja & Eric Monmasson, 2017. "An Improved LCL Filter Design in Order to Ensure Stability without Damping and Despite Large Grid Impedance Variations," Energies, MDPI, vol. 10(3), pages 1-19, March.
    3. Seung-Jin Yoon & Ngoc Bao Lai & Kyeong-Hwa Kim, 2018. "A Systematic Controller Design for a Grid-Connected Inverter with LCL Filter Using a Discrete-Time Integral State Feedback Control and State Observer," Energies, MDPI, vol. 11(2), pages 1-20, February.
    4. Xiaolong Shi & Jianguo Zhu & Dylan Lu & Li Li, 2019. "Multi-Functional Model Predictive Control with Mutual Influence Elimination for Three-Phase AC/DC Converters in Energy Conversion," Energies, MDPI, vol. 12(9), pages 1-17, April.
    5. Zhe Wang & Hua Lin & Yajun Ma, 2019. "A Control Strategy of Modular Multilevel Converter with Integrated Battery Energy Storage System Based on Battery Side Capacitor Voltage Control," Energies, MDPI, vol. 12(11), pages 1-21, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuxing Liu & Jiazhu Xu & Zhikang Shuai & Yong Li & Yanjian Peng & Chonggan Liang & Guiping Cui & Sijia Hu & Mingmin Zhang & Bin Xie, 2020. "A Novel Harmonic Suppression Traction Transformer with Integrated Filtering Inductors for Railway Systems," Energies, MDPI, vol. 13(2), pages 1-18, January.
    2. Min Huang & Han Li & Weimin Wu & Frede Blaabjerg, 2019. "Observer-Based Sliding Mode Control to Improve Stability of Three-Phase LCL-Filtered Grid-Connected VSIs," Energies, MDPI, vol. 12(8), pages 1-15, April.
    3. Suparak Srita & Sakda Somkun & Tanakorn Kaewchum & Wattanapong Rakwichian & Peter Zacharias & Uthen Kamnarn & Jutturit Thongpron & Damrong Amorndechaphon & Matheepot Phattanasak, 2022. "Modeling, Simulation and Development of Grid-Connected Voltage Source Converter with Selective Harmonic Mitigation: HiL and Experimental Validations," Energies, MDPI, vol. 15(7), pages 1-28, March.
    4. Pedro C. Bolsi & Edemar O. Prado & Hamiltom C. Sartori & João Manuel Lenz & José Renes Pinheiro, 2022. "LCL Filter Parameter and Hardware Design Methodology for Minimum Volume Considering Capacitor Lifetimes," Energies, MDPI, vol. 15(12), pages 1-20, June.
    5. Frate, G.F. & Cherubini, P. & Tacconelli, C. & Micangeli, A. & Ferrari, L. & Desideri, U., 2019. "Ramp rate abatement for wind power plants: A techno-economic analysis," Applied Energy, Elsevier, vol. 254(C).
    6. Yitao Liu & Shan Yin & Xuewei Pan & Huaizhi Wang & Guibin Wang & Jianchun Peng, 2017. "Effects of Nonlinearity in Input Filter on the Dynamic Behavior of an Interleaved Boost PFC Converter," Energies, MDPI, vol. 10(10), pages 1-14, October.
    7. Qitian Mu & Yajing Gao & Yongchun Yang & Haifeng Liang, 2019. "Design of Power Supply Package for Electricity Sales Companies Considering User Side Energy Storage Configuration," Energies, MDPI, vol. 12(17), pages 1-16, August.
    8. Zhilin Lyu & Qing Wei & Yiyi Zhang & Junhui Zhao & Emad Manla, 2018. "Adaptive Virtual Impedance Droop Control Based on Consensus Control of Reactive Current," Energies, MDPI, vol. 11(7), pages 1-17, July.
    9. Jose Miguel Espi & Rafael Garcia-Gil & Jaime Castello, 2017. "Capacitive Emulation for LCL-Filtered Grid-Connected Converters," Energies, MDPI, vol. 10(7), pages 1-15, July.
    10. Subhashree Choudhury & Mohit Bajaj & Taraprasanna Dash & Salah Kamel & Francisco Jurado, 2021. "Multilevel Inverter: A Survey on Classical and Advanced Topologies, Control Schemes, Applications to Power System and Future Prospects," Energies, MDPI, vol. 14(18), pages 1-48, September.
    11. Yu-Shan Cheng & Yi-Hua Liu & Holger C. Hesse & Maik Naumann & Cong Nam Truong & Andreas Jossen, 2018. "A PSO-Optimized Fuzzy Logic Control-Based Charging Method for Individual Household Battery Storage Systems within a Community," Energies, MDPI, vol. 11(2), pages 1-18, February.
    12. Ming Li & Xing Zhang & Wei Zhao, 2018. "A Novel Stability Improvement Strategy for a Multi-Inverter System in a Weak Grid Utilizing Dual-Mode Control," Energies, MDPI, vol. 11(8), pages 1-19, August.
    13. Xiaotao Chen & Weimin Wu & Ning Gao & Jiahao Liu & Henry Shu-Hung Chung & Frede Blaabjerg, 2019. "Finite Control Set Model Predictive Control for an LCL-Filtered Grid-Tied Inverter with Full Status Estimations under Unbalanced Grid Voltage," Energies, MDPI, vol. 12(14), pages 1-22, July.
    14. Kaluthanthrige, Roshani & Rajapakse, Athula D., 2021. "Evaluation of hierarchical controls to manage power, energy and daily operation of remote off-grid power systems," Applied Energy, Elsevier, vol. 299(C).
    15. Muhammad Jabir & Hazlee Azil Illias & Safdar Raza & Hazlie Mokhlis, 2017. "Intermittent Smoothing Approaches for Wind Power Output: A Review," Energies, MDPI, vol. 10(10), pages 1-23, October.
    16. Gianluca Brando & Efstratios Chatzinikolaou & Dan Rogers & Ivan Spina, 2021. "Electrochemical Cell Loss Minimization in Modular Multilevel Converters Based on Half-Bridge Modules," Energies, MDPI, vol. 14(5), pages 1-14, March.
    17. Phu Cong Nguyen & Quoc Dung Phan & Dinh Tuyen Nguyen, 2022. "A New Decentralized Space Vector PWM Method for Multilevel Single-Phase Full Bridge Converters," Energies, MDPI, vol. 15(3), pages 1-25, January.
    18. Cheng Nie & Yue Wang & Wanjun Lei & Tian Li & Shiyuan Yin, 2018. "Modeling and Enhanced Error-Free Current Control Strategy for Inverter with Virtual Resistor Damping," Energies, MDPI, vol. 11(10), pages 1-15, September.
    19. Rizka Bimarta & Thuy Vi Tran & Kyeong-Hwa Kim, 2018. "Frequency-Adaptive Current Controller Design Based on LQR State Feedback Control for a Grid-Connected Inverter under Distorted Grid," Energies, MDPI, vol. 11(10), pages 1-29, October.
    20. Faris Adnan Padhilah & Kyeong-Hwa Kim, 2020. "A Power Flow Control Strategy for Hybrid Control Architecture of DC Microgrid under Unreliable Grid Connection Considering Electricity Price Constraint," Sustainability, MDPI, vol. 12(18), pages 1-28, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:21:p:4093-:d:280630. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.