IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i3p336-d92611.html
   My bibliography  Save this article

An Improved LCL Filter Design in Order to Ensure Stability without Damping and Despite Large Grid Impedance Variations

Author

Listed:
  • Marwa Ben Said-Romdhane

    (Université de Tunis El Manar, Ecole Nationale d’Ingénieurs de Tunis, LR 11 ES 15, Laboratoire des Systèmes Electriques, BP 37-1002 Tunis le Belvédère, Tunisie)

  • Mohamed Wissem Naouar

    (Université de Tunis El Manar, Ecole Nationale d’Ingénieurs de Tunis, LR 11 ES 15, Laboratoire des Systèmes Electriques, BP 37-1002 Tunis le Belvédère, Tunisie)

  • Ilhem Slama Belkhodja

    (Université de Tunis El Manar, Ecole Nationale d’Ingénieurs de Tunis, LR 11 ES 15, Laboratoire des Systèmes Electriques, BP 37-1002 Tunis le Belvédère, Tunisie)

  • Eric Monmasson

    (Laboratoire des Systèmes et Applications des Technologies de l’Information et de l’Energie, University of Cergy-Pontoise, 33 bd du Port, 95000 Cergy-Pontoise, France)

Abstract

With the smart grid revolution, there is a growing interest in the use of power converters associated to LCL filters to interface between the main utility grid and loads or renewable energy sources. LCL filters are commonly used mainly due to their low cost and high filtering performances. To achieve these performances, it is necessary to meticulously pick out the LCL filter parameters, taking into account grid code requirements and grid configuration and/or conditions. Several methodologies for LCL filter design have been presented and discussed in the literature. The main goal of this paper is to propose a simple, robust and systematic design methodology for LCL filter parameter tuning. The considered design methodology is aimed to overcome the shortcomings of classical design methodologies, namely, stable operation under different grid configurations and conditions. Compared to previous works, the proposed design methodology allows the achievement of robust LCL filter design with regard to large grid impedance variations without the use of any damping method. Also, it takes into account accuracy of capacitor standard values and proposes a simple design method for the converter side inductor that avoids saturation problems. An example of LCL filter design is presented and discussed. The obtained filter parameters were firstly tested using a Matlab-Simulink software tool. After that, they were tested through the development of an experimental set-up. The obtained simulation and experimental results show the reliability and efficiency of the proposed design methodology.

Suggested Citation

  • Marwa Ben Said-Romdhane & Mohamed Wissem Naouar & Ilhem Slama Belkhodja & Eric Monmasson, 2017. "An Improved LCL Filter Design in Order to Ensure Stability without Damping and Despite Large Grid Impedance Variations," Energies, MDPI, vol. 10(3), pages 1-19, March.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:3:p:336-:d:92611
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/3/336/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/3/336/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Saïd-Romdhane, M. Ben & Naouar, M.W. & Belkhodja, I. Slama. & Monmasson, E., 2016. "Simple and systematic LCL filter design for three-phase grid-connected power converters," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 130(C), pages 181-193.
    2. Xingang Fu & Shuhui Li, 2016. "A Novel Neural Network Vector Control for Single-Phase Grid-Connected Converters with L, LC and LCL Filters," Energies, MDPI, vol. 9(5), pages 1-19, April.
    3. Wu Cao & Kangli Liu & Yongchao Ji & Yigang Wang & Jianfeng Zhao, 2015. "Design of a Four-Branch LCL -Type Grid-Connecting Interface for a Three-Phase, Four-Leg Active Power Filter," Energies, MDPI, vol. 8(3), pages 1-22, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dante Mora & Ciro Núñez & Nancy Visairo & Juan Segundo & Eugenio Camargo, 2019. "Control for Three-Phase LCL-Filter PWM Rectifier with BESS-Oriented Application," Energies, MDPI, vol. 12(21), pages 1-17, October.
    2. Suparak Srita & Sakda Somkun & Tanakorn Kaewchum & Wattanapong Rakwichian & Peter Zacharias & Uthen Kamnarn & Jutturit Thongpron & Damrong Amorndechaphon & Matheepot Phattanasak, 2022. "Modeling, Simulation and Development of Grid-Connected Voltage Source Converter with Selective Harmonic Mitigation: HiL and Experimental Validations," Energies, MDPI, vol. 15(7), pages 1-28, March.
    3. Yuxing Liu & Jiazhu Xu & Zhikang Shuai & Yong Li & Yanjian Peng & Chonggan Liang & Guiping Cui & Sijia Hu & Mingmin Zhang & Bin Xie, 2020. "A Novel Harmonic Suppression Traction Transformer with Integrated Filtering Inductors for Railway Systems," Energies, MDPI, vol. 13(2), pages 1-18, January.
    4. Cheng Nie & Yue Wang & Wanjun Lei & Tian Li & Shiyuan Yin, 2018. "Modeling and Enhanced Error-Free Current Control Strategy for Inverter with Virtual Resistor Damping," Energies, MDPI, vol. 11(10), pages 1-15, September.
    5. Long Bo & Lijun Huang & Yufei Dai & Youliang Lu & Kil To Chong, 2018. "Mitigation of DC Components Using Adaptive BP-PID Control in Transformless Three-Phase Grid-Connected Inverters," Energies, MDPI, vol. 11(8), pages 1-22, August.
    6. Pedro C. Bolsi & Edemar O. Prado & Hamiltom C. Sartori & João Manuel Lenz & José Renes Pinheiro, 2022. "LCL Filter Parameter and Hardware Design Methodology for Minimum Volume Considering Capacitor Lifetimes," Energies, MDPI, vol. 15(12), pages 1-20, June.
    7. Ming Li & Xing Zhang & Wei Zhao, 2018. "A Novel Stability Improvement Strategy for a Multi-Inverter System in a Weak Grid Utilizing Dual-Mode Control," Energies, MDPI, vol. 11(8), pages 1-19, August.
    8. Yitao Liu & Shan Yin & Xuewei Pan & Huaizhi Wang & Guibin Wang & Jianchun Peng, 2017. "Effects of Nonlinearity in Input Filter on the Dynamic Behavior of an Interleaved Boost PFC Converter," Energies, MDPI, vol. 10(10), pages 1-14, October.
    9. Kaluthanthrige, Roshani & Rajapakse, Athula D., 2021. "Evaluation of hierarchical controls to manage power, energy and daily operation of remote off-grid power systems," Applied Energy, Elsevier, vol. 299(C).
    10. Jose Miguel Espi & Rafael Garcia-Gil & Jaime Castello, 2017. "Capacitive Emulation for LCL-Filtered Grid-Connected Converters," Energies, MDPI, vol. 10(7), pages 1-15, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Iman Lorzadeh & Hossein Askarian Abyaneh & Mehdi Savaghebi & Alireza Bakhshai & Josep M. Guerrero, 2016. "Capacitor Current Feedback-Based Active Resonance Damping Strategies for Digitally-Controlled Inductive-Capacitive-Inductive-Filtered Grid-Connected Inverters," Energies, MDPI, vol. 9(8), pages 1-32, August.
    2. Zhaoxu Luo & Mei Su & Jian Yang & Yao Sun & Xiaochao Hou & Josep M. Guerrero, 2016. "A Repetitive Control Scheme Aimed at Compensating the 6 k + 1 Harmonics for a Three-Phase Hybrid Active Filter," Energies, MDPI, vol. 9(10), pages 1-17, September.
    3. Bingzhang Li & Shenghua Huang & Xi Chen, 2017. "Performance Improvement for Two-Stage Single-Phase Grid-Connected Converters Using a Fast DC Bus Control Scheme and a Novel Synchronous Frame Current Controller," Energies, MDPI, vol. 10(3), pages 1-30, March.
    4. Yap Hoon & Mohd Amran Mohd Radzi & Mohd Khair Hassan & Nashiren Farzilah Mailah, 2017. "A Self-Tuning Filter-Based Adaptive Linear Neuron Approach for Operation of Three-Level Inverter-Based Shunt Active Power Filters under Non-Ideal Source Voltage Conditions," Energies, MDPI, vol. 10(5), pages 1-28, May.
    5. Muhammad Ammirrul Atiqi Mohd Zainuri & Mohd Amran Mohd Radzi & Azura Che Soh & Norman Mariun & Nasrudin Abd Rahim & Shahrooz Hajighorbani, 2016. "Fundamental Active Current Adaptive Linear Neural Networks for Photovoltaic Shunt Active Power Filters," Energies, MDPI, vol. 9(6), pages 1-20, May.
    6. Emiyamrew Minaye Molla & Cheng-Chien Kuo, 2020. "Voltage Quality Enhancement of Grid-Integrated PV System Using Battery-Based Dynamic Voltage Restorer," Energies, MDPI, vol. 13(21), pages 1-16, November.
    7. Yap Hoon & Mohd Amran Mohd Radzi & Mohd Khair Hassan & Nashiren Farzilah Mailah, 2017. "A Refined Self-Tuning Filter-Based Instantaneous Power Theory Algorithm for Indirect Current Controlled Three-Level Inverter-Based Shunt Active Power Filters under Non-sinusoidal Source Voltage Condit," Energies, MDPI, vol. 10(3), pages 1-21, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:3:p:336-:d:92611. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.