IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v8y2015i3p1606-1627d46208.html
   My bibliography  Save this article

Design of a Four-Branch LCL -Type Grid-Connecting Interface for a Three-Phase, Four-Leg Active Power Filter

Author

Listed:
  • Wu Cao

    (School of Electrical Engineering, Southeast University, No 2 Si Pai Lou, Nanjing 210096, China)

  • Kangli Liu

    (School of Electrical Engineering, Southeast University, No 2 Si Pai Lou, Nanjing 210096, China)

  • Yongchao Ji

    (School of Electrical Engineering, Southeast University, No 2 Si Pai Lou, Nanjing 210096, China)

  • Yigang Wang

    (School of Electrical Engineering, Southeast University, No 2 Si Pai Lou, Nanjing 210096, China)

  • Jianfeng Zhao

    (School of Electrical Engineering, Southeast University, No 2 Si Pai Lou, Nanjing 210096, China)

Abstract

Compared with the three-phase, two-split-capacitor active power filter (3P2C-APF), the three-phase, four-leg active power filter (3P4L-APF) has been widely used in three-phase, four-wire grid utility for power quality control due to its numerous advantages, such as higher current output capability, particularly in phase N, lower current and easier voltage control on the DC-side. However, designing the grid-connecting interface, which is between the voltage source converter (VSC) and grid utility, is rather difficult due to the higher requirement for current ripple filtering in phase N, cross-coupling in four phases and lack of relevant design methodology and specification. In this paper, a four-branch LCL-type (4B-LCL) grid-connecting interface is proposed for 3P4L-APF, which features better current ripple filtering performance without decreasing the current output capability in all phases. First, this paper describes the mathematical models of 4B-LCL in the fully-complex-vector form from the zero and non-zero sequence perspective, resulting in two independent and uniform equivalent circuits without cross coupling terms. Then, the 4B-LCL parameter design method based on the most comprehensive performance index is proposed, including three main stages as the specification: performance index requirement determination, fulfillment of that requirement, and verification. Finally, the validity and effectiveness of the proposed design are proven by the simulated and experimental results of a 3P4L-APF with 4B-LCL .

Suggested Citation

  • Wu Cao & Kangli Liu & Yongchao Ji & Yigang Wang & Jianfeng Zhao, 2015. "Design of a Four-Branch LCL -Type Grid-Connecting Interface for a Three-Phase, Four-Leg Active Power Filter," Energies, MDPI, vol. 8(3), pages 1-22, February.
  • Handle: RePEc:gam:jeners:v:8:y:2015:i:3:p:1606-1627:d:46208
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/8/3/1606/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/8/3/1606/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhaoxu Luo & Mei Su & Jian Yang & Yao Sun & Xiaochao Hou & Josep M. Guerrero, 2016. "A Repetitive Control Scheme Aimed at Compensating the 6 k + 1 Harmonics for a Three-Phase Hybrid Active Filter," Energies, MDPI, vol. 9(10), pages 1-17, September.
    2. Yap Hoon & Mohd Amran Mohd Radzi & Mohd Khair Hassan & Nashiren Farzilah Mailah, 2017. "A Refined Self-Tuning Filter-Based Instantaneous Power Theory Algorithm for Indirect Current Controlled Three-Level Inverter-Based Shunt Active Power Filters under Non-sinusoidal Source Voltage Condit," Energies, MDPI, vol. 10(3), pages 1-21, February.
    3. Iman Lorzadeh & Hossein Askarian Abyaneh & Mehdi Savaghebi & Alireza Bakhshai & Josep M. Guerrero, 2016. "Capacitor Current Feedback-Based Active Resonance Damping Strategies for Digitally-Controlled Inductive-Capacitive-Inductive-Filtered Grid-Connected Inverters," Energies, MDPI, vol. 9(8), pages 1-32, August.
    4. Marwa Ben Said-Romdhane & Mohamed Wissem Naouar & Ilhem Slama Belkhodja & Eric Monmasson, 2017. "An Improved LCL Filter Design in Order to Ensure Stability without Damping and Despite Large Grid Impedance Variations," Energies, MDPI, vol. 10(3), pages 1-19, March.
    5. Yap Hoon & Mohd Amran Mohd Radzi & Mohd Khair Hassan & Nashiren Farzilah Mailah, 2017. "A Self-Tuning Filter-Based Adaptive Linear Neuron Approach for Operation of Three-Level Inverter-Based Shunt Active Power Filters under Non-Ideal Source Voltage Conditions," Energies, MDPI, vol. 10(5), pages 1-28, May.
    6. Muhammad Ammirrul Atiqi Mohd Zainuri & Mohd Amran Mohd Radzi & Azura Che Soh & Norman Mariun & Nasrudin Abd Rahim & Shahrooz Hajighorbani, 2016. "Fundamental Active Current Adaptive Linear Neural Networks for Photovoltaic Shunt Active Power Filters," Energies, MDPI, vol. 9(6), pages 1-20, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:8:y:2015:i:3:p:1606-1627:d:46208. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.