IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i19p3776-d273480.html
   My bibliography  Save this article

Enhancement of a R-410A Reclamation Process Using Various Heat-Pump-Assisted Distillation Configurations

Author

Listed:
  • Nguyen Van Duc Long

    (School of Chemical Engineering, Yeungnam University, Gyeongsan 712-749, Korea
    These two authors contributed equally to this work.)

  • Thi Hiep Han

    (School of Chemical Engineering, Yeungnam University, Gyeongsan 712-749, Korea
    These two authors contributed equally to this work.)

  • Dong Young Lee

    (School of Chemical Engineering, Yeungnam University, Gyeongsan 712-749, Korea)

  • Sun Yong Park

    (OunR2tech Co., Ltd, Pohang 37553, Korea)

  • Byeng Bong Hwang

    (OunR2tech Co., Ltd, Pohang 37553, Korea)

  • Moonyong Lee

    (School of Chemical Engineering, Yeungnam University, Gyeongsan 712-749, Korea)

Abstract

Distillation for R-410A reclamation from a waste refrigerant is an energy-intensive process. Thus, various heat pump configurations were proposed to enhance the energy efficiency of existing conventional distillation columns for separating R-410A and R-22. One new heat pump configuration combining a vapor compression (VC) heat pump with cold water and hot water cycles was suggested for easy operation and control. Both advantages and disadvantages of each heat pump configuration were also evaluated. The results showed that the mechanical vapor recompression heat pump with top vapor superheating saved up to 29.5%, 100.0%, and 10.5% of the energy required in the condenser duty, reboiler duty, and operating cost, respectively, compared to a classical heat pump system, and 85.2%, 100.0%, and 60.8%, respectively, compared to the existing conventional column. In addition, this work demonstrated that the operating pressure of a VC heat pump could be lower than that of the existing distillation column, allowing for an increase in capacity of up to 20%. In addition, replacing the throttle valve with a hydraulic turbine showed isentropic expansion can decrease the operating cost by up to 20.9% as compared to the new heat pump configuration without a hydraulic turbine. Furthermore, the reduction in carbon dioxide emission was investigated to assess the environmental impact of all proposed sequences.

Suggested Citation

  • Nguyen Van Duc Long & Thi Hiep Han & Dong Young Lee & Sun Yong Park & Byeng Bong Hwang & Moonyong Lee, 2019. "Enhancement of a R-410A Reclamation Process Using Various Heat-Pump-Assisted Distillation Configurations," Energies, MDPI, vol. 12(19), pages 1-11, October.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:19:p:3776-:d:273480
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/19/3776/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/19/3776/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Le Quang Minh & Nguyen Van Duc Long & Pham Luu Trung Duong & Youngmi Jung & Alireza Bahadori & Moonyong Lee, 2015. "Design of an Extractive Distillation Column for the Environmentally Benign Separation of Zirconium and Hafnium Tetrachloride for Nuclear Power Reactor Applications," Energies, MDPI, vol. 8(9), pages 1-16, September.
    2. Long, Nguyen Van Duc & Minh, Le Quang & Nhien, Le Cao & Lee, Moonyong, 2015. "A novel self-heat recuperative dividing wall column to maximize energy efficiency and column throughput in retrofitting and debottlenecking of a side stream column," Applied Energy, Elsevier, vol. 159(C), pages 28-38.
    3. Wang, Hailei & Peterson, Richard & Harada, Kevin & Miller, Erik & Ingram-Goble, Robbie & Fisher, Luke & Yih, James & Ward, Chris, 2011. "Performance of a combined organic Rankine cycle and vapor compression cycle for heat activated cooling," Energy, Elsevier, vol. 36(1), pages 447-458.
    4. Kazemi, Abolghasem & Mehrabani-Zeinabad, Arjomand & Beheshti, Masoud, 2018. "Recently developed heat pump assisted distillation configurations: A comparative study," Applied Energy, Elsevier, vol. 211(C), pages 1261-1281.
    5. Jisook Lee & Yongho Son & Kwang Soon Lee & Wangyun Won, 2019. "Economic Analysis and Environmental Impact Assessment of Heat Pump-Assisted Distillation in a Gas Fractionation Unit," Energies, MDPI, vol. 12(5), pages 1-19, March.
    6. Modla, G. & Lang, P., 2013. "Heat pump systems with mechanical compression for batch distillation," Energy, Elsevier, vol. 62(C), pages 403-417.
    7. Qyyum, Muhammad Abdul & Ali, Wahid & Long, Nguyen Van Duc & Khan, Mohd Shariq & Lee, Moonyong, 2018. "Energy efficiency enhancement of a single mixed refrigerant LNG process using a novel hydraulic turbine," Energy, Elsevier, vol. 144(C), pages 968-976.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kazemi, Abolghasem & Mehrabani-Zeinabad, Arjomand & Beheshti, Masoud, 2018. "Recently developed heat pump assisted distillation configurations: A comparative study," Applied Energy, Elsevier, vol. 211(C), pages 1261-1281.
    2. Cui, Chengtian & Qi, Meng & Zhang, Xiaodong & Sun, Jinsheng & Li, Qing & Kiss, Anton A. & Wong, David Shan-Hill & Masuku, Cornelius M. & Lee, Moonyong, 2024. "Electrification of distillation for decarbonization: An overview and perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    3. Khaliq Majeed & Muhammad Abdul Qyyum & Alam Nawaz & Ashfaq Ahmad & Muhammad Naqvi & Tianbiao He & Moonyong Lee, 2020. "Shuffled Complex Evolution-Based Performance Enhancement and Analysis of Cascade Liquefaction Process for Large-Scale LNG Production," Energies, MDPI, vol. 13(10), pages 1-20, May.
    4. Vélez, Fredy & Segovia, José J. & Martín, M. Carmen & Antolín, Gregorio & Chejne, Farid & Quijano, Ana, 2012. "A technical, economical and market review of organic Rankine cycles for the conversion of low-grade heat for power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4175-4189.
    5. Francesconi, Marco & Antonelli, Marco, 2017. "A numerical model for the prediction of the fluid dynamic and mechanical losses of a Wankel-type expansion device," Applied Energy, Elsevier, vol. 205(C), pages 225-235.
    6. Uwitonze, Hosanna & Chaniago, Yus Donald & Lim, Hankwon, 2022. "Novel integrated energy-efficient dual-effect single mixed refrigerant and NGLs recovery process for small-scale natural gas processing plant," Energy, Elsevier, vol. 254(PA).
    7. Yamada, Noboru & Tominaga, Yoshihito & Yoshida, Takanori, 2014. "Demonstration of 10-Wp micro organic Rankine cycle generator for low-grade heat recovery," Energy, Elsevier, vol. 78(C), pages 806-813.
    8. Li, Jiaojiao & Zoghi, Mohammad & Zhao, Linfeng, 2022. "Thermo-economic assessment and optimization of a geothermal-driven tri-generation system for power, cooling, and hydrogen production," Energy, Elsevier, vol. 244(PB).
    9. Gaetano Morgese & Francesco Fornarelli & Paolo Oresta & Tommaso Capurso & Michele Stefanizzi & Sergio M. Camporeale & Marco Torresi, 2020. "Fast Design Procedure for Turboexpanders in Pressure Energy Recovery Applications," Energies, MDPI, vol. 13(14), pages 1-26, July.
    10. Zhou, Xia & Fang, Song & Zhang, Hanwei & Xu, Zhuoren & Jiang, Hanying & Rong, Yangyiming & Wang, Kai & Zhi, Xiaoqin & Qiu, Limin, 2023. "Dynamic characteristics of a mechanically coupled organic Rankine-vapor compression system for heat-driven cooling," Energy, Elsevier, vol. 280(C).
    11. Vaclav Novotny & David J. Szucs & Jan Špale & Hung-Yin Tsai & Michal Kolovratnik, 2021. "Absorption Power and Cooling Combined Cycle with an Aqueous Salt Solution as a Working Fluid and a Technically Feasible Configuration," Energies, MDPI, vol. 14(12), pages 1-26, June.
    12. Al-Sulaiman, Fahad A. & Dincer, Ibrahim & Hamdullahpur, Feridun, 2012. "Energy and exergy analyses of a biomass trigeneration system using an organic Rankine cycle," Energy, Elsevier, vol. 45(1), pages 975-985.
    13. Guo, T. & Wang, H.X. & Zhang, S.J., 2011. "Fluids and parameters optimization for a novel cogeneration system driven by low-temperature geothermal sources," Energy, Elsevier, vol. 36(5), pages 2639-2649.
    14. Wang, E.H. & Zhang, H.G. & Zhao, Y. & Fan, B.Y. & Wu, Y.T. & Mu, Q.H., 2012. "Performance analysis of a novel system combining a dual loop organic Rankine cycle (ORC) with a gasoline engine," Energy, Elsevier, vol. 43(1), pages 385-395.
    15. Kim, Hyunwoo & Lee, Shinje & Won, Wangyun, 2021. "System-level analyses for the production of 1,6-hexanediol from cellulose," Energy, Elsevier, vol. 214(C).
    16. Qyyum, Muhammad Abdul & Qadeer, Kinza & Minh, Le Quang & Haider, Junaid & Lee, Moonyong, 2019. "Nitrogen self-recuperation expansion-based process for offshore coproduction of liquefied natural gas, liquefied petroleum gas, and pentane plus," Applied Energy, Elsevier, vol. 235(C), pages 247-257.
    17. Kutlu, Cagri & Erdinc, Mehmet Tahir & Li, Jing & Wang, Yubo & Su, Yuehong, 2019. "A study on heat storage sizing and flow control for a domestic scale solar-powered organic Rankine cycle-vapour compression refrigeration system," Renewable Energy, Elsevier, vol. 143(C), pages 301-312.
    18. Muhammad Abdul Qyyum & Yus Donald Chaniago & Wahid Ali & Hammad Saulat & Moonyong Lee, 2020. "Membrane-Assisted Removal of Hydrogen and Nitrogen from Synthetic Natural Gas for Energy-Efficient Liquefaction," Energies, MDPI, vol. 13(19), pages 1-18, September.
    19. Kim, H. & Baek, S. & Won, W., 2022. "Integrative technical, economic, and environmental sustainability analysis for the development process of biomass-derived 2,5-furandicarboxylic acid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    20. Chen, Hao & Zhao, Li & Cong, Haifeng & Li, Xingang, 2022. "Synthesis of waste heat recovery using solar organic Rankine cycle in the separation of benzene/toluene/p-xylene process," Energy, Elsevier, vol. 255(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:19:p:3776-:d:273480. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.