IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i18p3432-d264697.html
   My bibliography  Save this article

Modeling and Control Design of the Symmetrical Interleaved Coupled-Inductor-Based Boost DC-DC Converter with Clamp Circuits

Author

Listed:
  • Márcio Rodrigo Santos de Carvalho

    (Department of Electrical Engineering, Federal University of Pernambuco, 50740-550 Recife, Brazil)

  • Fabrício Bradaschia

    (Department of Electrical Engineering, Federal University of Pernambuco, 50740-550 Recife, Brazil)

  • Leonardo Rodrigues Limongi

    (Department of Electrical Engineering, Federal University of Pernambuco, 50740-550 Recife, Brazil)

  • Gustavo Medeiros de Souza Azevedo

    (Department of Electrical Engineering, Federal University of Pernambuco, 50740-550 Recife, Brazil)

Abstract

The symmetrical input-interleaved high-gain DC-DC converters are suitable candidates to be used as the first stage in PV microinverters and as parallel-connected power optimizers. In both applications, they are responsible for boosting the PV module DC voltage to a higher value and executing the maximum power point tracking control. However, such converters have many state variables, some of them discontinuous, and many operation stages, which make the development of the small-signal model a challenging task. Therefore, the aim of this paper is to propose a reduced-order improved average method (ROIAM) to model the family member of converters that present characteristics such as symmetry, interleaved operation, and discontinuous state-space variables. ROIAM is applied to model for the first time in the literature the symmetrically-interleaved coupled inductor-based boost (SICIBB), leading to a fourth-order mathematical model (reduced-order model). The complete eighth-order mathematical model is developed as well to prove that the reduced-order model represents correctly the dynamic behavior of the SICIBB converter by employing only four state variables, reducing considerably the effort of the modeling. Based on the reduced-order proposed model, a closed-loop control is designed and tested in a 300-W prototype of the SICIBB converter.

Suggested Citation

  • Márcio Rodrigo Santos de Carvalho & Fabrício Bradaschia & Leonardo Rodrigues Limongi & Gustavo Medeiros de Souza Azevedo, 2019. "Modeling and Control Design of the Symmetrical Interleaved Coupled-Inductor-Based Boost DC-DC Converter with Clamp Circuits," Energies, MDPI, vol. 12(18), pages 1-21, September.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:18:p:3432-:d:264697
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/18/3432/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/18/3432/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zeb, Kamran & Uddin, Waqar & Khan, Muhammad Adil & Ali, Zunaib & Ali, Muhammad Umair & Christofides, Nicholas & Kim, H.J., 2018. "A comprehensive review on inverter topologies and control strategies for grid connected photovoltaic system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 1120-1141.
    2. Sri Revathi, B. & Prabhakar, M., 2016. "Non isolated high gain DC-DC converter topologies for PV applications – A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 920-933.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lebogang Masike & Michael Njoroge Gitau & Grain P. Adam, 2022. "A Unified Rule-Based Small-Signal Modelling Technique for Two-Switch, Non-Isolated DC–DC Converters in CCM," Energies, MDPI, vol. 15(15), pages 1-23, July.
    2. Aline V. C. Pereira & Marcelo C. Cavalcanti & Gustavo M. Azevedo & Fabrício Bradaschia & Rafael C. Neto & Márcio Rodrigo Santos de Carvalho, 2021. "A Novel Single-Switch High Step-Up DC–DC Converter with Three-Winding Coupled Inductor," Energies, MDPI, vol. 14(19), pages 1-17, October.
    3. Cleonor C. das Neves & Walter B. Junior & Renan L. P. de Medeiros & Florindo A. C. Ayres Junior & Iury V. Bessa & Isaías V. Bessa & Gabriela de M. Veroneze & Luiz E. S. e Silva & Nei J. S. Farias, 2020. "Direct Form Digital Robust RST Control Based on Chebyshev Sphere Optimization Applied in a DC-DC Power Converter," Energies, MDPI, vol. 13(15), pages 1-22, July.
    4. Eduardo Augusto Oliveira Barbosa & Márcio Rodrigo Santos de Carvalho & Leonardo Rodrigues Limongi & Marcelo Cabral Cavalcanti & Eduardo José Barbosa & Gustavo Medeiros de Souza Azevedo, 2021. "High-Gain High-Efficiency DC–DC Converter with Single-Core Parallel Operation Switched Inductors and Rectifier Voltage Multiplier Cell," Energies, MDPI, vol. 14(15), pages 1-18, July.
    5. Márcio R. S. de Carvalho & Rafael C. Neto & Eduardo J. Barbosa & Leonardo R. Limongi & Fabrício Bradaschia & Marcelo C. Cavalcanti, 2021. "An Overview of Voltage Boosting Techniques and Step-Up DC-DC Converters Topologies for PV Applications," Energies, MDPI, vol. 14(24), pages 1-25, December.
    6. Fatemeh Nasr Esfahani & Ahmed Darwish & Ahmed Massoud, 2022. "PV/Battery Grid Integration Using a Modular Multilevel Isolated SEPIC-Based Converter," Energies, MDPI, vol. 15(15), pages 1-25, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmad Alzahrani & Pourya Shamsi & Mehdi Ferdowsi, 2020. "Interleaved Multistage Step-Up Topologies with Voltage Multiplier Cells," Energies, MDPI, vol. 13(22), pages 1-18, November.
    2. Hassan M. H. Farh & Mohd F. Othman & Ali M. Eltamaly & M. S. Al-Saud, 2018. "Maximum Power Extraction from a Partially Shaded PV System Using an Interleaved Boost Converter," Energies, MDPI, vol. 11(10), pages 1-18, September.
    3. Mostafa Ahmed & Mohamed Abdelrahem & Ibrahim Harbi & Ralph Kennel, 2020. "An Adaptive Model-Based MPPT Technique with Drift-Avoidance for Grid-Connected PV Systems," Energies, MDPI, vol. 13(24), pages 1-25, December.
    4. Fabio Corti & Antonino Laudani & Gabriele Maria Lozito & Martina Palermo & Michele Quercio & Francesco Pattini & Stefano Rampino, 2023. "Dynamic Analysis of a Supercapacitor DC-Link in Photovoltaic Conversion Applications," Energies, MDPI, vol. 16(16), pages 1-19, August.
    5. Amir, Asim & Amir, Aamir & Che, Hang Seng & Elkhateb, Ahmad & Rahim, Nasrudin Abd, 2019. "Comparative analysis of high voltage gain DC-DC converter topologies for photovoltaic systems," Renewable Energy, Elsevier, vol. 136(C), pages 1147-1163.
    6. Kurz, Konstantin & Bock, Carolin & Knodt, Michèle & Stöckl, Anna, 2022. "A Friend in Need Is a Friend Indeed? Analysis of the Willingness to Share Self-Produced Electricity During a Long-lasting Power Outage," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 136773, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    7. Vasudevan, Krishnakumar R. & Ramachandaramurthy, Vigna K. & Venugopal, Gomathi & Ekanayake, J.B. & Tiong, S.K., 2021. "Variable speed pumped hydro storage: A review of converters, controls and energy management strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    8. Aditi Atul Desai & Suresh Mikkili & Tomonobu Senjyu, 2022. "Novel H6 Transformerless Inverter for Grid Connected Photovoltaic System to Reduce the Conduction Loss and Enhance Efficiency," Energies, MDPI, vol. 15(10), pages 1-22, May.
    9. Kamran Zeb & Tiago Davi Curi Busarello & Saif Ul Islam & Waqar Uddin & Kummara Venkata Guru Raghavendra & Muhammad Adil Khan & Hee-Je Kim, 2020. "Design of Super Twisting Sliding Mode Controller for a Three-Phase Grid-connected Photovoltaic System under Normal and Abnormal Conditions," Energies, MDPI, vol. 13(15), pages 1-21, July.
    10. Mohamed Salem & Anna Richelli & Khalid Yahya & Muhammad Najwan Hamidi & Tze-Zhang Ang & Ibrahim Alhamrouni, 2022. "A Comprehensive Review on Multilevel Inverters for Grid-Tied System Applications," Energies, MDPI, vol. 15(17), pages 1-40, August.
    11. Khaled Osmani & Ahmad Haddad & Mohammad Alkhedher & Thierry Lemenand & Bruno Castanier & Mohamad Ramadan, 2023. "A Novel MPPT-Based Lithium-Ion Battery Solar Charger for Operation under Fluctuating Irradiance Conditions," Sustainability, MDPI, vol. 15(12), pages 1-31, June.
    12. Ievgen Verbytskyi & Mykola Lukianov & Kawsar Nassereddine & Bohdan Pakhaliuk & Oleksandr Husev & Ryszard Michał Strzelecki, 2022. "Power Converter Solutions for Industrial PV Applications—A Review," Energies, MDPI, vol. 15(9), pages 1-33, April.
    13. Talada Appala Naidu & Hamad Mohamed Ali Ahmed Albeshr & Ammar Al-Sabounchi & Sajan K. Sadanandan & Tareg Ghaoud, 2023. "A Study on Various Conditions Impacting the Harmonics at Point of Common Coupling in On-Grid Solar Photovoltaic Systems," Energies, MDPI, vol. 16(17), pages 1-31, September.
    14. Giovanni Nobile & Ester Vasta & Mario Cacciato & Giuseppe Scarcella & Giacomo Scelba & Agnese Giuseppa Federica Di Stefano & Giuseppe Leotta & Paola Maria Pugliatti & Fabrizio Bizzarri, 2020. "Performance Assessment of Large Photovoltaic (PV) Plants Using an Integrated State-Space Average Modeling Approach," Energies, MDPI, vol. 13(18), pages 1-27, September.
    15. Ankit, & Sahoo, Sarat Kumar & Sukchai, Sukruedee & Yanine, Franco Fernando, 2018. "Review and comparative study of single-stage inverters for a PV system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 962-986.
    16. Walmsley, Timothy Gordon & Philipp, Matthias & Picón-Núñez, Martín & Meschede, Henning & Taylor, Matthew Thomas & Schlosser, Florian & Atkins, Martin John, 2023. "Hybrid renewable energy utility systems for industrial sites: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    17. Kamran Zeb & Muhammad Saqib Nazir & Iftikhar Ahmad & Waqar Uddin & Hee-Je Kim, 2021. "Control of Transformerless Inverter-Based Two-Stage Grid-Connected Photovoltaic System Using Adaptive-PI and Adaptive Sliding Mode Controllers," Energies, MDPI, vol. 14(9), pages 1-15, April.
    18. Hossein Gholizadeh & Saman A. Gorji & Ebrahim Afjei & Dezso Sera, 2021. "Design and Implementation of a New Cuk-Based Step-Up DC–DC Converter," Energies, MDPI, vol. 14(21), pages 1-18, October.
    19. Norbert Chamier-Gliszczynski & Grzegorz Trzmiel & Jarosław Jajczyk & Aleksandra Juszczak & Waldemar Woźniak & Mariusz Wasiak & Robert Wojtachnik & Krzysztof Santarek, 2023. "The Influence of Distributed Generation on the Operation of the Power System, Based on the Example of PV Micro-Installations," Energies, MDPI, vol. 16(3), pages 1-29, January.
    20. Márcio R. S. de Carvalho & Rafael C. Neto & Eduardo J. Barbosa & Leonardo R. Limongi & Fabrício Bradaschia & Marcelo C. Cavalcanti, 2021. "An Overview of Voltage Boosting Techniques and Step-Up DC-DC Converters Topologies for PV Applications," Energies, MDPI, vol. 14(24), pages 1-25, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:18:p:3432-:d:264697. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.