IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i17p3297-d261299.html
   My bibliography  Save this article

Enhanced CO 2 Conversion to Acetate through Microbial Electrosynthesis (MES) by Continuous Headspace Gas Recirculation

Author

Listed:
  • Raúl Mateos

    (Chemical and Environmental Bioprocess Engineering Group, Natural Resources Institute (IRENA), Universidad de León, Av. de Portugal 41, 24009 León, Spain)

  • Ana Sotres

    (Chemical and Environmental Bioprocess Engineering Group, Natural Resources Institute (IRENA), Universidad de León, Av. de Portugal 41, 24009 León, Spain)

  • Raúl M. Alonso

    (Chemical and Environmental Bioprocess Engineering Group, Natural Resources Institute (IRENA), Universidad de León, Av. de Portugal 41, 24009 León, Spain)

  • Antonio Morán

    (Chemical and Environmental Bioprocess Engineering Group, Natural Resources Institute (IRENA), Universidad de León, Av. de Portugal 41, 24009 León, Spain)

  • Adrián Escapa

    (Chemical and Environmental Bioprocess Engineering Group, Natural Resources Institute (IRENA), Universidad de León, Av. de Portugal 41, 24009 León, Spain
    Department of Electrical Engineering and Automatic Systems, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain)

Abstract

Bioelectrochemical systems (BESs) is a term that encompasses a group of novel technologies able to interconvert electrical energy and chemical energy by means of a bioelectroactive biofilm. Microbial electrosynthesis (MES) systems, which branch off from BESs, are able to convert CO 2 into valuable organic chemicals and fuels. This study demonstrates that CO 2 reduction in MES systems can be enhanced by enriching the inoculum and improving CO 2 availability to the biofilm. The proposed system is proven to be a repetitive, efficient, and selective way of consuming CO 2 for the production of acetic acid, showing cathodic efficiencies of over 55% and CO 2 conversions of over 80%. Continuous recirculation of the gas headspace through the catholyte allowed for a 44% improvement in performance, achieving CO 2 fixation rates of 171 mL CO 2 L −1 ·d −1 , a maximum daily acetate production rate of 261 mg HAc·L −1 ·d −1 , and a maximum acetate titer of 1957 mg·L −1 . High-throughput sequencing revealed that CO 2 reduction was mainly driven by a mixed-culture biocathode, in which Sporomusa and Clostridium , both bioelectrochemical acetogenic bacteria, were identified together with other species such as Desulfovibrio , Pseudomonas , Arcobacter , Acinetobacter or Sulfurospirillum , which are usually found in cathodic biofilms. Moreover, results suggest that these communities are responsible of maintaining a stable reactor performance.

Suggested Citation

  • Raúl Mateos & Ana Sotres & Raúl M. Alonso & Antonio Morán & Adrián Escapa, 2019. "Enhanced CO 2 Conversion to Acetate through Microbial Electrosynthesis (MES) by Continuous Headspace Gas Recirculation," Energies, MDPI, vol. 12(17), pages 1-13, August.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:17:p:3297-:d:261299
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/17/3297/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/17/3297/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jafar Ali & Aaqib Sohail & Lei Wang & Muhammad Rizwan Haider & Shahi Mulk & Gang Pan, 2018. "Electro-Microbiology as a Promising Approach Towards Renewable Energy and Environmental Sustainability," Energies, MDPI, vol. 11(7), pages 1-30, July.
    2. Jafary, Tahereh & Daud, Wan Ramli Wan & Ghasemi, Mostafa & Kim, Byung Hong & Md Jahim, Jamaliah & Ismail, Manal & Lim, Swee Su, 2015. "Biocathode in microbial electrolysis cell; present status and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 23-33.
    3. Janusz Zdeb & Natalia Howaniec & Adam Smoliński, 2019. "Utilization of Carbon Dioxide in Coal Gasification—An Experimental Study," Energies, MDPI, vol. 12(1), pages 1-12, January.
    4. Raúl Santiago Muñoz-Aguilar & Daniele Molognoni & Pau Bosch-Jimenez & Eduard Borràs & Mónica Della Pirriera & Álvaro Luna, 2018. "Design, Operation, Modeling and Grid Integration of Power-to-Gas Bioelectrochemical Systems," Energies, MDPI, vol. 11(8), pages 1-15, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vera Marcantonio & Marcello De Falco & Enrico Bocci, 2022. "Non-Thermal Plasma Technology for CO 2 Conversion—An Overview of the Most Relevant Experimental Results and Kinetic Models," Energies, MDPI, vol. 15(20), pages 1-18, October.
    2. Sekoai, Patrick T. & Ghimire, Anish & Ezeokoli, Obinna T. & Rao, Subramanya & Ngan, Wing Y. & Habimana, Olivier & Yao, Yuan & Yang, Pu & Yiu Fung, Aster Hei & Yoro, Kelvin O. & Daramola, Michael O. & , 2021. "Valorization of volatile fatty acids from the dark fermentation waste Streams-A promising pathway for a biorefinery concept," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sara Bellocchi & Michele Manno & Michel Noussan & Michela Vellini, 2019. "Impact of Grid-Scale Electricity Storage and Electric Vehicles on Renewable Energy Penetration: A Case Study for Italy," Energies, MDPI, vol. 12(7), pages 1-32, April.
    2. Smoliński, Adam & Howaniec, Natalia, 2023. "Experimental investigation and chemometric analysis of gasification and co-gasification of olive pomace and Sida Hermaphrodita blends with sewage sludge to hydrogen-rich gas," Energy, Elsevier, vol. 284(C).
    3. Shahparasti, Mahdi & Rajaei, Amirhossein & Tarrassó, Andres & Luna, Alvaro, 2022. "A multi-output AC/DC energy conversion system for grid integration of bioelectrochemical power-to-gas storage," Energy, Elsevier, vol. 249(C).
    4. Furqan Tahir & Haider Ali & Ahmer A.B. Baloch & Yasir Jamil, 2019. "Performance Analysis of Air and Oxy-Fuel Laminar Combustion in a Porous Plate Reactor," Energies, MDPI, vol. 12(9), pages 1-16, May.
    5. Sadhukhan, Jhuma & Lloyd, Jon R. & Scott, Keith & Premier, Giuliano C. & Yu, Eileen H. & Curtis, Tom & Head, Ian M., 2016. "A critical review of integration analysis of microbial electrosynthesis (MES) systems with waste biorefineries for the production of biofuel and chemical from reuse of CO2," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 116-132.
    6. Jarosław Chećko & Tomasz Urych & Małgorzata Magdziarczyk & Adam Smolinski, 2020. "Research on the Processes of Injecting CO 2 into Coal Seams with CH 4 Recovery Using Horizontal Wells," Energies, MDPI, vol. 13(2), pages 1-20, January.
    7. Pelaz, Guillermo & González, Rubén & Morán, Antonio & Escapa, Adrián, 2023. "Elucidating the impact of power interruptions on microbial electromethanogenesis," Applied Energy, Elsevier, vol. 331(C).
    8. Yadav, Ashish & Verma, Nishith, 2019. "Efficient hydrogen production using Ni-graphene oxide-dispersed laser-engraved 3D carbon micropillars as electrodes for microbial electrolytic cell," Renewable Energy, Elsevier, vol. 138(C), pages 628-638.
    9. Ferraren-De Cagalitan, D.D.T. & Abundo, M.L.S., 2021. "A review of biohydrogen production technology for application towards hydrogen fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    10. Ceballos-Escalera, Alba & Molognoni, Daniele & Bosch-Jimenez, Pau & Shahparasti, Mahdi & Bouchakour, Salim & Luna, Alvaro & Guisasola, Albert & Borràs, Eduard & Della Pirriera, Monica, 2020. "Bioelectrochemical systems for energy storage: A scaled-up power-to-gas approach," Applied Energy, Elsevier, vol. 260(C).
    11. J. Sadhik Basha & Tahereh Jafary & Ranjit Vasudevan & Jahanzeb Khan Bahadur & Muna Al Ajmi & Aadil Al Neyadi & Manzoore Elahi M. Soudagar & MA Mujtaba & Abrar Hussain & Waqar Ahmed & Kiran Shahapurkar, 2021. "Potential of Utilization of Renewable Energy Technologies in Gulf Countries," Sustainability, MDPI, vol. 13(18), pages 1-29, September.
    12. Rousseau, Raphaël & Etcheverry, Luc & Roubaud, Emma & Basséguy, Régine & Délia, Marie-Line & Bergel, Alain, 2020. "Microbial electrolysis cell (MEC): Strengths, weaknesses and research needs from electrochemical engineering standpoint," Applied Energy, Elsevier, vol. 257(C).
    13. Zdeb, Janusz & Howaniec, Natalia & Smoliński, Adam, 2023. "Experimental study on combined valorization of bituminous coal derived fluidized bed fly ash and carbon dioxide from energy sector," Energy, Elsevier, vol. 265(C).
    14. Jiang, Yong & Yang, Xufei & Liang, Peng & Liu, Panpan & Huang, Xia, 2018. "Microbial fuel cell sensors for water quality early warning systems: Fundamentals, signal resolution, optimization and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 292-305.
    15. Xiao, Shuai & Fu, Qian & Li, Zhuo & Li, Jun & Zhang, Liang & Zhu, Xun & Liao, Qiang, 2021. "Solar-driven biological inorganic hybrid systems for the production of solar fuels and chemicals from carbon dioxide," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    16. Tian, Hailin & Li, Jie & Yan, Miao & Tong, Yen Wah & Wang, Chi-Hwa & Wang, Xiaonan, 2019. "Organic waste to biohydrogen: A critical review from technological development and environmental impact analysis perspective," Applied Energy, Elsevier, vol. 256(C).
    17. Daniele Cecconet & Arianna Callegari & Andrea G. Capodaglio, 2018. "Bioelectrochemical Systems for Removal of Selected Metals and Perchlorate from Groundwater: A Review," Energies, MDPI, vol. 11(10), pages 1-21, October.
    18. Rubén Rodríguez-Alegre & Alba Ceballos-Escalera & Daniele Molognoni & Pau Bosch-Jimenez & David Galí & Edxon Licon & Monica Della Pirriera & Julia Garcia-Montaño & Eduard Borràs, 2019. "Integration of Membrane Contactors and Bioelectrochemical Systems for CO 2 Conversion to CH 4," Energies, MDPI, vol. 12(3), pages 1-19, January.
    19. Parkhey, Piyush & Gupta, Pratima, 2017. "Improvisations in structural features of microbial electrolytic cell and process parameters of electrohydrogenesis for efficient biohydrogen production: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1085-1099.
    20. Natalia Czaplicka & Donata Konopacka-Łyskawa, 2020. "Utilization of Gaseous Carbon Dioxide and Industrial Ca-Rich Waste for Calcium Carbonate Precipitation: A Review," Energies, MDPI, vol. 13(23), pages 1-25, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:17:p:3297-:d:261299. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.