IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i10p2001-d234222.html
   My bibliography  Save this article

Effects of the Heat Treatment in the Properties of Fibrous Aerogel Thermal Insulation

Author

Listed:
  • Ákos Lakatos

    (Department of Building Services and Building Engineering, Faculty of Engineering, University of Debrecen, Ótemető str 2-4 1, 4028 Debrecen, Hungary)

  • Attila Csík

    (Institute for Nuclear Research, Hungarian Academy of Sciences, Bem tér 18/c, 4026 Debrecen, Hungary)

  • Anton Trník

    (Department of Physics, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, Tr. A Hlinku 1, 94974 Nitra, Slovakia
    Department of Materials Engineering and Chemistry, Faculty of Civil Engineering, Czech Technical University in Prague, Thákurova 7, 16629 Prague, Czech Republic)

  • István Budai

    (Department of Engineering Management and Enterprise, Faculty of Engineering, University of Debrecen, Ótemető str 2-4, 4028 Debrecen, Hungary)

Abstract

Nowadays, besides the use of conventional insulations (plastic foams and wool materials), aerogels are one of the most promising thermal insulation materials. As one of the lightest solid materials available today, aerogels are manufactured through the combination of a polymer with a solvent, forming a gel. For buildings, the fiber-reinforced types are mainly used. In this paper, the changes both in the thermal performance and the material structure of the aerogel blanket are followed after thermal annealing. The samples are put under isothermal heat treatments at 70 °C for weeks, as well as at higher temperatures (up to 210 °C) for one day. The changes in the sorption properties that result from the annealing are presented. Furthermore, the changes in the thermal conductivity are followed by a Holometrix Lambda heat flow meter. The changes in the structure and surface of the material due to the heat treatment are investigated by X-ray diffraction and with scanning electron microscopy. Besides, the above-mentioned measurement results of differential scanning calorimetry experiments are also presented. As a result of using equipment from different laboratories that support each other, we found that the samples go through structural changes after undergoing thermal annealing. We manifested that the aerogel granules separate down from the glass fibers and grow up. This phenomenon might be responsible for the change in the thermal conductivity of the samples.

Suggested Citation

  • Ákos Lakatos & Attila Csík & Anton Trník & István Budai, 2019. "Effects of the Heat Treatment in the Properties of Fibrous Aerogel Thermal Insulation," Energies, MDPI, vol. 12(10), pages 1-12, May.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:10:p:2001-:d:234222
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/10/2001/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/10/2001/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cuce, Erdem & Cuce, Pinar Mert & Wood, Christopher J. & Riffat, Saffa B., 2014. "Toward aerogel based thermal superinsulation in buildings: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 273-299.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ákos Lakatos & Anton Trník, 2020. "Thermal Diffusion in Fibrous Aerogel Blankets," Energies, MDPI, vol. 13(4), pages 1-9, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Jiangming & Wu, Huijun & Xu, Xinhua & Huang, Gongsheng & Xu, Tao & Guo, Sitong & Liang, Yuying, 2019. "Numerical and experimental study on the thermal performance of aerogel insulating panels for building energy efficiency," Renewable Energy, Elsevier, vol. 138(C), pages 445-457.
    2. Davide Del Curto & Valentina Cinieri, 2020. "Aerogel-Based Plasters and Energy Efficiency of Historic Buildings. Literature Review and Guidelines for Manufacturing Specimens Destined for Thermal Tests," Sustainability, MDPI, vol. 12(22), pages 1-23, November.
    3. Berardi, Umberto & Nosrati, Roya Hamideh, 2018. "Long-term thermal conductivity of aerogel-enhanced insulating materials under different laboratory aging conditions," Energy, Elsevier, vol. 147(C), pages 1188-1202.
    4. Villasmil, Willy & Fischer, Ludger J. & Worlitschek, Jörg, 2019. "A review and evaluation of thermal insulation materials and methods for thermal energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 71-84.
    5. Cuce, Erdem & Riffat, Saffa B., 2015. "A state-of-the-art review on innovative glazing technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 695-714.
    6. Umberto Berardi & Lamberto Tronchin & Massimiliano Manfren & Benedetto Nastasi, 2018. "On the Effects of Variation of Thermal Conductivity in Buildings in the Italian Construction Sector," Energies, MDPI, vol. 11(4), pages 1-17, April.
    7. Cuce, Pinar Mert & Riffat, Saffa, 2016. "A state of the art review of evaporative cooling systems for building applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1240-1249.
    8. Santu Golder & Ramadas Narayanan & Md. Rashed Hossain & Mohammad Rofiqul Islam, 2021. "Experimental and CFD Investigation on the Application for Aerogel Insulation in Buildings," Energies, MDPI, vol. 14(11), pages 1-16, June.
    9. Cuce, Erdem, 2016. "Toward multi-functional PV glazing technologies in low/zero carbon buildings: Heat insulation solar glass – Latest developments and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1286-1301.
    10. Ihara, Takeshi & Gao, Tao & Grynning, Steinar & Jelle, Bjørn Petter & Gustavsen, Arild, 2015. "Aerogel granulate glazing facades and their application potential from an energy saving perspective," Applied Energy, Elsevier, vol. 142(C), pages 179-191.
    11. Moretti, Elisa & Belloni, Elisa & Agosti, Fabrizio, 2016. "Innovative mineral fiber insulation panels for buildings: Thermal and acoustic characterization," Applied Energy, Elsevier, vol. 169(C), pages 421-432.
    12. Guo, Haijin & Cai, Shanshan & Li, Kun & Liu, Zhongming & Xia, Lizhi & Xiong, Jiazhuang, 2020. "Simultaneous test and visual identification of heat and moisture transport in several types of thermal insulation," Energy, Elsevier, vol. 197(C).
    13. Cuce, Pinar Mert & Riffat, Saffa, 2015. "A comprehensive review of heat recovery systems for building applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 665-682.
    14. Ibrahim, Mohamad & Biwole, Pascal Henry & Achard, Patrick & Wurtz, Etienne & Ansart, Guillaume, 2015. "Building envelope with a new aerogel-based insulating rendering: Experimental and numerical study, cost analysis, and thickness optimization," Applied Energy, Elsevier, vol. 159(C), pages 490-501.
    15. Sun, Yanyi & Wilson, Robin & Wu, Yupeng, 2018. "A Review of Transparent Insulation Material (TIM) for building energy saving and daylight comfort," Applied Energy, Elsevier, vol. 226(C), pages 713-729.
    16. Shafaghat, A. & Keyvanfar, A., 2022. "Dynamic façades design typologies, technologies, measurement techniques, and physical performances across thermal, optical, ventilation, and electricity generation outlooks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    17. Wang, Yingying & Huang, Jinjin & Wang, Dengjia & Liu, Yanfeng & Zhao, Zejiao & Liu, Jiaping, 2019. "Experimental investigation on thermal conductivity of aerogel-incorporated concrete under various hygrothermal environment," Energy, Elsevier, vol. 188(C).
    18. Bjørn Petter Jelle, 2015. "Building Integrated Photovoltaics: A Concise Description of the Current State of the Art and Possible Research Pathways," Energies, MDPI, vol. 9(1), pages 1-30, December.
    19. Yang, Tianrun & Liu, Wen & Kramer, Gert Jan & Sun, Qie, 2021. "Seasonal thermal energy storage: A techno-economic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    20. Cuce, Erdem & Harjunowibowo, Dewanto & Cuce, Pinar Mert, 2016. "Renewable and sustainable energy saving strategies for greenhouse systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 34-59.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:10:p:2001-:d:234222. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.