IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2018i1p105-d193909.html
   My bibliography  Save this article

Investigation of Separated Two-Phase Thermosiphon Loop for Relieving the Air-Conditioning Loading in Datacenter

Author

Listed:
  • Hafiz M. Daraghmeh

    (Department of Mechanical Engineering, National Chiao Tung University, Hsinchu 300, Taiwan)

  • Mohammed W. Sulaiman

    (Department of Mechanical Engineering, National Chiao Tung University, Hsinchu 300, Taiwan)

  • Kai-Shing Yang

    (Green Energy & Environment Research Laboratories, Industrial Technology Research Institute, Hsinchu 300, Taiwan)

  • Chi-Chuan Wang

    (Department of Mechanical Engineering, National Chiao Tung University, Hsinchu 300, Taiwan)

Abstract

This study investigates the feasibility of using R-134a filled separated two-phase thermosiphon loop (STPTL) as a free cooling technique in datacenters. Two data center racks one of them is attached with fin and tube thermosiphon were cooled by CRAC unit (computer room air conditioning unit) individually. Thermosiphon can help to partially eliminate the compressor loading of the CRAC; thus, energy saving potential of thermosiphon loop was investigated. The condenser is a water-cooled design and perfluoroalkoxy pipes were used as adiabatic riser/downcomer for easier installation and mobile capability. Tests were conducted with filling ratio ranging from 0 to 90%. The test results indicate that the energy saving increases with the rise of filling ratio and an optimum energy savings of 38.7% can be achieved at filling ratios of 70%, a further increase of filling ratio leads to a reduction in energy saving. At a low filling ratio like 10%, the evaporator starves for refrigerant and a very uneven air temperature distribution occurring at the exit of data rack. The uneven temperature distribution is relieved considerably when the evaporator is fully flooded. It is also found that the energy saving is in line with the rise of system pressure. Overfilling of the evaporator may lead to a decline of system pressure. A lower thermal resistance occurs at high filling ratios and higher ambient temperature.

Suggested Citation

  • Hafiz M. Daraghmeh & Mohammed W. Sulaiman & Kai-Shing Yang & Chi-Chuan Wang, 2018. "Investigation of Separated Two-Phase Thermosiphon Loop for Relieving the Air-Conditioning Loading in Datacenter," Energies, MDPI, vol. 12(1), pages 1-18, December.
  • Handle: RePEc:gam:jeners:v:12:y:2018:i:1:p:105-:d:193909
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/1/105/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/1/105/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Penglei & Wang, Baolong & Wu, Wei & Shi, Wenxing & Li, Xianting, 2015. "Heat recovery from Internet data centers for space heating based on an integrated air conditioner with thermosyphon," Renewable Energy, Elsevier, vol. 80(C), pages 396-406.
    2. Zhang, Hainan & Shao, Shuangquan & Xu, Hongbo & Zou, Huiming & Tang, Mingsheng & Tian, Changqing, 2017. "Simulation on the performance and free cooling potential of the thermosyphon mode in an integrated system of mechanical refrigeration and thermosyphon," Applied Energy, Elsevier, vol. 185(P2), pages 1604-1612.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cao, Jingyu & Zheng, Zhanying & Asim, Muhammad & Hu, Mingke & Wang, Qiliang & Su, Yuehong & Pei, Gang & Leung, Michael K.H., 2020. "A review on independent and integrated/coupled two-phase loop thermosyphons," Applied Energy, Elsevier, vol. 280(C).
    2. Meng, Fanxi & Zhang, Quan & Lin, Yaolin & Zou, Sikai & Fu, Jiyao & Liu, Baochang & Wang, Wei & Ma, Xiaowei & Du, Sheng, 2022. "Field study on the performance of a thermosyphon and mechanical refrigeration hybrid cooling system in a 5G telecommunication base station," Energy, Elsevier, vol. 252(C).
    3. Tong, Zhen & Liu, Xiao-Hua & Jiang, Yi, 2017. "Experimental study of the self-regulating performance of an R744 two-phase thermosyphon loop," Applied Energy, Elsevier, vol. 186(P1), pages 1-12.
    4. Zhang, Hainan & Shao, Shuangquan & Tian, Changqing & Zhang, Kunzhu, 2018. "A review on thermosyphon and its integrated system with vapor compression for free cooling of data centers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 789-798.
    5. Xia, Guanghui & Zhuang, Dawei & Ding, Guoliang & Lu, Jingchao, 2020. "A quasi-three-dimensional distributed parameter model of micro-channel separated heat pipe applied for cooling telecommunication cabinets," Applied Energy, Elsevier, vol. 276(C).
    6. Jiawen Yu & Yanqiu Yan & Yiqiang Jiang & Jie Ge, 2022. "Renewable energy configuration scheme of data center in cold area. A case study [An overview of renewable energy resources and grid integration for commercial building applications]," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 17, pages 411-420.
    7. Cao, Jingyu & Hong, Xiaoqiang & Zheng, Zhanying & Asim, Muhammad & Hu, Mingke & Wang, Qiliang & Pei, Gang & Leung, Michael K.H., 2020. "Performance characteristics of variable conductance loop thermosyphon for energy-efficient building thermal control," Applied Energy, Elsevier, vol. 275(C).
    8. Zhang, Penglei & Wang, Baolong & Shi, Wenxing & Li, Xianting, 2015. "Experimental investigation on two-phase thermosyphon loop with partially liquid-filled downcomer," Applied Energy, Elsevier, vol. 160(C), pages 10-17.
    9. Han, Zongwei & Wei, Haotian & Sun, Xiaoqing & Bai, Chenguang & Xue, Da & Li, Xiuming, 2020. "Study on influence of operating parameters of data center air conditioning system based on the concept of on-demand cooling," Renewable Energy, Elsevier, vol. 160(C), pages 99-111.
    10. Cristina Ramos Cáceres & Suzanna Törnroth & Mattias Vesterlund & Andreas Johansson & Marcus Sandberg, 2022. "Data-Center Farming: Exploring the Potential of Industrial Symbiosis in a Subarctic Region," Sustainability, MDPI, vol. 14(5), pages 1-23, February.
    11. Isazadeh, Amin & Ziviani, Davide & Claridge, David E., 2023. "Global trends, performance metrics, and energy reduction measures in datacom facilities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 174(C).
    12. Sikai Zou & Chang Yue & Ting Xiao & Xingyi Ma & Yiwei Wang, 2023. "Study on Effects of Operating Parameters on a Water-Cooled Loop Thermosyphon System under Partial Server Utilization," Sustainability, MDPI, vol. 15(17), pages 1-20, August.
    13. Ali Khalid Shaker Al-Sayyab & Joaquín Navarro-Esbrí & Angel Barragán-Cervera & Adrián Mota-Babiloni, 2022. "Techno-economic analysis of a PV/T waste heat–driven compound ejector-heat pump for simultaneous data centre cooling and district heating using low global warming potential refrigerants," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(7), pages 1-24, October.
    14. Shao, Shuangquan & Liu, Haichao & Zhang, Hainan & Tian, Changqing, 2019. "Experimental investigation on a loop thermosyphon with evaporative condenser for free cooling of data centers," Energy, Elsevier, vol. 185(C), pages 829-836.
    15. Huang, Qionghai & Shao, Shuangquan & Zhang, Hainan & Tian, Changqing, 2019. "Development and composition of a data center heat recovery system and evaluation of annual operation performance," Energy, Elsevier, vol. 189(C).
    16. Graamans, Luuk & Tenpierik, Martin & van den Dobbelsteen, Andy & Stanghellini, Cecilia, 2020. "Plant factories: Reducing energy demand at high internal heat loads through façade design," Applied Energy, Elsevier, vol. 262(C).
    17. Asma Mohamad Aris & Bahman Shabani, 2015. "Sustainable Power Supply Solutions for Off-Grid Base Stations," Energies, MDPI, vol. 8(10), pages 1-38, September.
    18. Yu, Jiawen & Jiang, Yiqiang & Yan, Yanqiu, 2019. "A simulation study on heat recovery of data center: A case study in Harbin, China," Renewable Energy, Elsevier, vol. 130(C), pages 154-173.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2018:i:1:p:105-:d:193909. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.