IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i9p2184-d164981.html
   My bibliography  Save this article

CO 2 Pipeline Design: A Review

Author

Listed:
  • Suoton P. Peletiri

    (Department of Chemical Engineering, Faculty of Engineering and Informatics, University of Bradford, Bradford BD7 1DP, UK
    Chemical and Petroleum Engineering, Faculty of Engineering, Niger Delta University, Wilberforce Island, Bayelsa State 560103, Nigeria)

  • Nejat Rahmanian

    (Department of Chemical Engineering, Faculty of Engineering and Informatics, University of Bradford, Bradford BD7 1DP, UK)

  • Iqbal M. Mujtaba

    (Department of Chemical Engineering, Faculty of Engineering and Informatics, University of Bradford, Bradford BD7 1DP, UK)

Abstract

There is a need to accurately design pipelines to meet the expected increase in the construction of carbon dioxide (CO 2 ) pipelines after the signing of the Paris Climate Agreement. CO 2 pipelines are usually designed with the assumption of a pure CO 2 fluid, even though it usually contains impurities, which affect the critical pressure, critical temperature, phase behaviour, and pressure and temperature changes in the pipeline. The design of CO 2 pipelines and the calculation of process parameters and fluid properties is not quite accurate with the assumption of pure CO 2 fluids. This paper reviews the design of rich CO 2 pipelines including pipeline route selection, length and right of way, fluid flow rates and velocities, need for single point-to-point or trunk pipelines, pipeline operating pressures and temperatures, pipeline wall thickness, fluid stream composition, fluid phases, and pipeline diameter and pressure drop calculations. The performance of a hypothetical pipeline was simulated using gPROMS (ver. 4.2.0) and Aspen HYSYS (ver.10.1) and the results of both software were compared to validate equations. Pressure loss due to fluid acceleration was ignored in the development of the diameter/pressure drop equations. Work is ongoing to incorporate fluid acceleration effect and the effects of impurities to improve the current models.

Suggested Citation

  • Suoton P. Peletiri & Nejat Rahmanian & Iqbal M. Mujtaba, 2018. "CO 2 Pipeline Design: A Review," Energies, MDPI, vol. 11(9), pages 1-25, August.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:9:p:2184-:d:164981
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/9/2184/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/9/2184/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ajay Gambhir & Tamaryn Napp & Adam Hawkes & Lena Höglund-Isaksson & Wilfried Winiwarter & Pallav Purohit & Fabian Wagner & Dan Bernie & Jason Lowe, 2017. "The Contribution of Non-CO 2 Greenhouse Gas Mitigation to Achieving Long-Term Temperature Goals," Energies, MDPI, vol. 10(5), pages 1-23, May.
    2. Munkejord, Svend Tollak & Hammer, Morten & Løvseth, Sigurd W., 2016. "CO2 transport: Data and models – A review," Applied Energy, Elsevier, vol. 169(C), pages 499-523.
    3. Olajire, Abass A., 2010. "CO2 capture and separation technologies for end-of-pipe applications – A review," Energy, Elsevier, vol. 35(6), pages 2610-2628.
    4. repec:cdl:itsdav:qt4nx7p2rz is not listed on IDEAS
    5. repec:cdl:itsdav:qt1zg00532 is not listed on IDEAS
    6. repec:cdl:itsdav:qt5hf491tt is not listed on IDEAS
    7. Middleton, Richard S. & Bielicki, Jeffrey M., 2009. "A scalable infrastructure model for carbon capture and storage: SimCCS," Energy Policy, Elsevier, vol. 37(3), pages 1052-1060, March.
    8. repec:cdl:itsdav:qt4b85674s is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jaap Pedersen & Thi Thai Le & Thorsten Koch & Janina Zittel, 2024. "Optimal discrete pipe sizing for tree-shaped CO2 networks," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 46(4), pages 1163-1187, December.
    2. Simonsen, Kenneth René & Hansen, Dennis Severin & Pedersen, Simon, 2024. "Challenges in CO2 transportation: Trends and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    3. Ravikumar, Dwarakanath & Keoleian, Gregory & Miller, Shelie, 2020. "The environmental opportunity cost of using renewable energy for carbon capture and utilization for methanol production," Applied Energy, Elsevier, vol. 279(C).
    4. Yu, Shuai & Yan, Xingqing & He, Yifan & Chen, Lei & Yu, Jianliang & Chen, Shaoyun, 2024. "Establishment of a one-dimensional model for CO2 Pipeline rupture process and design recommendations," Energy, Elsevier, vol. 308(C).
    5. Zhu, Jianlu & Xie, Naiya & Miao, Qing & Li, Zihe & Hu, Qihui & Yan, Feng & Li, Yuxing, 2024. "Simulation of boost path and phase control method in supercritical CO2 pipeline commissioning process," Renewable Energy, Elsevier, vol. 231(C).
    6. Aminnaji, Morteza & Qureshi, M Fahed & Dashti, Hossein & Hase, Alfred & Mosalanejad, Abdolali & Jahanbakhsh, Amir & Babaei, Masoud & Amiri, Amirpiran & Maroto-Valer, Mercedes, 2024. "CO2 gas hydrate for carbon capture and storage applications – Part 2," Energy, Elsevier, vol. 300(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Peng-Tao & Wei, Yi-Ming & Yang, Bo & Li, Jia-Quan & Kang, Jia-Ning & Liu, Lan-Cui & Yu, Bi-Ying & Hou, Yun-Bing & Zhang, Xian, 2020. "Carbon capture and storage in China’s power sector: Optimal planning under the 2 °C constraint," Applied Energy, Elsevier, vol. 263(C).
    2. Nehil Shreyash & Muskan Sonker & Sushant Bajpai & Saurabh Kr Tiwary & Mohd Ashhar Khan & Subham Raj & Tushar Sharma & Susham Biswas, 2021. "The Review of Carbon Capture-Storage Technologies and Developing Fuel Cells for Enhancing Utilization," Energies, MDPI, vol. 14(16), pages 1-34, August.
    3. Kobayashi, Makoto & Akiho, Hiroyuki & Nakao, Yoshinobu, 2015. "Performance evaluation of porous sodium aluminate sorbent for halide removal process in oxy-fuel IGCC power generation plant," Energy, Elsevier, vol. 92(P3), pages 320-327.
    4. Kemp, Alexander G. & Kasim, Sola, 2013. "The economics of CO2-EOR cluster developments in the UK Central North Sea," Energy Policy, Elsevier, vol. 62(C), pages 1344-1355.
    5. Zhao, Zhijun & Xing, Xiao & Tang, Zhigang & Zheng, Yong & Fei, Weiyang & Liang, Xiangfeng & Ataeivarjovi, E. & Guo, Dong, 2018. "Experiment and simulation study of CO2 solubility in dimethyl carbonate, 1-octyl-3-methylimidazolium tetrafluoroborate and their mixtures," Energy, Elsevier, vol. 143(C), pages 35-42.
    6. Sun, Alexander Y., 2020. "Optimal carbon storage reservoir management through deep reinforcement learning," Applied Energy, Elsevier, vol. 278(C).
    7. Narukulla, Ramesh & Chaturvedi, Krishna Raghav & Ojha, Umaprasana & Sharma, Tushar, 2022. "Carbon dioxide capturing evaluation of polyacryloyl hydrazide solutions via rheological analysis for carbon utilization applications," Energy, Elsevier, vol. 241(C).
    8. Massol, Olivier & Tchung-Ming, Stéphane & Banal-Estañol, Albert, 2018. "Capturing industrial CO2 emissions in Spain: Infrastructures, costs and break-even prices," Energy Policy, Elsevier, vol. 115(C), pages 545-560.
    9. Oei, Pao-Yu & Mendelevitch, Roman, 2016. "European Scenarios of CO₂ Infrastructure Investment until 2050," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 37, pages 171-194.
    10. Qianlin Zhu & Chuang Wang & Zhihan Fan & Jing Ma & Fu Chen, 2019. "Optimal matching between CO2 sources in Jiangsu province and sinks in Subei‐Southern South Yellow Sea basin, China," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 9(1), pages 95-105, February.
    11. Dindi, Abdallah & Quang, Dang Viet & Abu-Zahra, Mohammad R.M., 2015. "Simultaneous carbon dioxide capture and utilization using thermal desalination reject brine," Applied Energy, Elsevier, vol. 154(C), pages 298-308.
    12. Vega, F. & Baena-Moreno, F.M. & Gallego Fernández, Luz M. & Portillo, E. & Navarrete, B. & Zhang, Zhien, 2020. "Current status of CO2 chemical absorption research applied to CCS: Towards full deployment at industrial scale," Applied Energy, Elsevier, vol. 260(C).
    13. Budzianowski, Wojciech Marcin, 2011. "Can ‘negative net CO2 emissions’ from decarbonised biogas-to-electricity contribute to solving Poland’s carbon capture and sequestration dilemmas?," Energy, Elsevier, vol. 36(11), pages 6318-6325.
    14. Zhang, Hanfei & Wang, Ligang & Pérez-Fortes, Mar & Van herle, Jan & Maréchal, François & Desideri, Umberto, 2020. "Techno-economic optimization of biomass-to-methanol with solid-oxide electrolyzer," Applied Energy, Elsevier, vol. 258(C).
    15. Ashouri, Mahyar & Chhokar, Callum & Bahrami, Majid, 2024. "A novel microgroove-based absorber for sorption heat transformation systems: Analytical modeling and experimental investigation," Energy, Elsevier, vol. 307(C).
    16. Chen, Zhaoyang & Fang, Jie & Xu, Chungang & Xia, Zhiming & Yan, Kefeng & Li, Xiaosen, 2020. "Carbon dioxide hydrate separation from Integrated Gasification Combined Cycle (IGCC) syngas by a novel hydrate heat-mass coupling method," Energy, Elsevier, vol. 199(C).
    17. Ronald Ssebadduka & Kyuro Sasaki & Yuichi Sugai, 2020. "An Analysis of the Possible Financial Savings of a Carbon Capture Process through Carbon Dioxide Absorption and Geological Dumping," International Journal of Energy Economics and Policy, Econjournals, vol. 10(4), pages 266-270.
    18. Jeffrey M. Bielicki & Guillaume Calas & Richard S. Middleton & Minh Ha‐Duong, 2014. "National corridors for climate change mitigation: managing industrial CO 2 emissions in France," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 4(3), pages 262-277, June.
    19. Li, Xiaoqiang & Ding, Yudong & Guo, Liheng & Liao, Qiang & Zhu, Xun & Wang, Hong, 2019. "Non-aqueous energy-efficient absorbents for CO2 capture based on porous silica nanospheres impregnated with amine," Energy, Elsevier, vol. 171(C), pages 109-119.
    20. Nasvi, M.C.M. & Ranjith, P.G. & Sanjayan, J. & Haque, A., 2013. "Sub- and super-critical carbon dioxide permeability of wellbore materials under geological sequestration conditions: An experimental study," Energy, Elsevier, vol. 54(C), pages 231-239.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:9:p:2184-:d:164981. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.