CO 2 Pipeline Design: A Review
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Ogden, Joan M, 2004. "Conceptual Design of Optimized Fossil Energy Systems with Capture and Sequestration of Carbon Dioxide," Institute of Transportation Studies, Working Paper Series qt4nx7p2rz, Institute of Transportation Studies, UC Davis.
- Ogden, Joan, 2004. "Conceptual Design of Optimized Fossil Energy Systems with Capture and Sequestration of Carbon Dioxide," Institute of Transportation Studies, Working Paper Series qt5hf491tt, Institute of Transportation Studies, UC Davis.
- Munkejord, Svend Tollak & Hammer, Morten & Løvseth, Sigurd W., 2016. "CO2 transport: Data and models – A review," Applied Energy, Elsevier, vol. 169(C), pages 499-523.
- Olajire, Abass A., 2010. "CO2 capture and separation technologies for end-of-pipe applications – A review," Energy, Elsevier, vol. 35(6), pages 2610-2628.
- McCollum, David L & Ogden, Joan M, 2006. "Techno-Economic Models for Carbon Dioxide Compression, Transport, and Storage & Correlations for Estimating Carbon Dioxide Density and Viscosity," Institute of Transportation Studies, Working Paper Series qt1zg00532, Institute of Transportation Studies, UC Davis.
- Middleton, Richard S. & Bielicki, Jeffrey M., 2009. "A scalable infrastructure model for carbon capture and storage: SimCCS," Energy Policy, Elsevier, vol. 37(3), pages 1052-1060, March.
- Ogden, Joan, 2004. "Conceptual Design of Optimized Fossil Energy Systems with Capture and Sequestration of Carbon Dioxide," Institute of Transportation Studies, Working Paper Series qt4b85674s, Institute of Transportation Studies, UC Davis.
- Ajay Gambhir & Tamaryn Napp & Adam Hawkes & Lena Höglund-Isaksson & Wilfried Winiwarter & Pallav Purohit & Fabian Wagner & Dan Bernie & Jason Lowe, 2017. "The Contribution of Non-CO 2 Greenhouse Gas Mitigation to Achieving Long-Term Temperature Goals," Energies, MDPI, vol. 10(5), pages 1-23, May.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Simonsen, Kenneth René & Hansen, Dennis Severin & Pedersen, Simon, 2024. "Challenges in CO2 transportation: Trends and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
- Ravikumar, Dwarakanath & Keoleian, Gregory & Miller, Shelie, 2020. "The environmental opportunity cost of using renewable energy for carbon capture and utilization for methanol production," Applied Energy, Elsevier, vol. 279(C).
- Aminnaji, Morteza & Qureshi, M Fahed & Dashti, Hossein & Hase, Alfred & Mosalanejad, Abdolali & Jahanbakhsh, Amir & Babaei, Masoud & Amiri, Amirpiran & Maroto-Valer, Mercedes, 2024. "CO2 gas hydrate for carbon capture and storage applications – Part 2," Energy, Elsevier, vol. 300(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Olateju, Babatunde & Kumar, Amit, 2013. "Techno-economic assessment of hydrogen production from underground coal gasification (UCG) in Western Canada with carbon capture and sequestration (CCS) for upgrading bitumen from oil sands," Applied Energy, Elsevier, vol. 111(C), pages 428-440.
- Zhang, Shuai & Liu, Linlin & Zhang, Lei & Zhuang, Yu & Du, Jian, 2018. "An optimization model for carbon capture utilization and storage supply chain: A case study in Northeastern China," Applied Energy, Elsevier, vol. 231(C), pages 194-206.
- Verma, Aman & Olateju, Babatunde & Kumar, Amit, 2015. "Greenhouse gas abatement costs of hydrogen production from underground coal gasification," Energy, Elsevier, vol. 85(C), pages 556-568.
- Clausen, Lasse R. & Elmegaard, Brian & Houbak, Niels, 2010. "Technoeconomic analysis of a low CO2 emission dimethyl ether (DME) plant based on gasification of torrefied biomass," Energy, Elsevier, vol. 35(12), pages 4831-4842.
- McCollum, David L & Ogden, Joan M, 2006. "Techno-Economic Models for Carbon Dioxide Compression, Transport, and Storage & Correlations for Estimating Carbon Dioxide Density and Viscosity," Institute of Transportation Studies, Working Paper Series qt1zg00532, Institute of Transportation Studies, UC Davis.
- Olateju, Babatunde & Kumar, Amit, 2016. "A techno-economic assessment of hydrogen production from hydropower in Western Canada for the upgrading of bitumen from oil sands," Energy, Elsevier, vol. 115(P1), pages 604-614.
- Olateju, Babatunde & Monds, Joshua & Kumar, Amit, 2014. "Large scale hydrogen production from wind energy for the upgrading of bitumen from oil sands," Applied Energy, Elsevier, vol. 118(C), pages 48-56.
- Hailey, Anna K. & Meerman, Johannes C. & Larson, Eric D. & Loo, Yueh-Lin, 2016. "Low-carbon “drop-in replacement” transportation fuels from non-food biomass and natural gas," Applied Energy, Elsevier, vol. 183(C), pages 1722-1730.
- Wang, Peng-Tao & Wei, Yi-Ming & Yang, Bo & Li, Jia-Quan & Kang, Jia-Ning & Liu, Lan-Cui & Yu, Bi-Ying & Hou, Yun-Bing & Zhang, Xian, 2020. "Carbon capture and storage in China’s power sector: Optimal planning under the 2 °C constraint," Applied Energy, Elsevier, vol. 263(C).
- Tayari, Farid & Blumsack, Seth, 2020. "A real options approach to production and injection timing under uncertainty for CO2 sequestration in depleted shale gas reservoirs," Applied Energy, Elsevier, vol. 263(C).
- Nehil Shreyash & Muskan Sonker & Sushant Bajpai & Saurabh Kr Tiwary & Mohd Ashhar Khan & Subham Raj & Tushar Sharma & Susham Biswas, 2021. "The Review of Carbon Capture-Storage Technologies and Developing Fuel Cells for Enhancing Utilization," Energies, MDPI, vol. 14(16), pages 1-34, August.
- Kobayashi, Makoto & Akiho, Hiroyuki & Nakao, Yoshinobu, 2015. "Performance evaluation of porous sodium aluminate sorbent for halide removal process in oxy-fuel IGCC power generation plant," Energy, Elsevier, vol. 92(P3), pages 320-327.
- Verma, Aman & Kumar, Amit, 2015. "Life cycle assessment of hydrogen production from underground coal gasification," Applied Energy, Elsevier, vol. 147(C), pages 556-568.
- Kemp, Alexander G. & Kasim, Sola, 2013. "The economics of CO2-EOR cluster developments in the UK Central North Sea," Energy Policy, Elsevier, vol. 62(C), pages 1344-1355.
- Zhao, Zhijun & Xing, Xiao & Tang, Zhigang & Zheng, Yong & Fei, Weiyang & Liang, Xiangfeng & Ataeivarjovi, E. & Guo, Dong, 2018. "Experiment and simulation study of CO2 solubility in dimethyl carbonate, 1-octyl-3-methylimidazolium tetrafluoroborate and their mixtures," Energy, Elsevier, vol. 143(C), pages 35-42.
- Sun, Alexander Y., 2020. "Optimal carbon storage reservoir management through deep reinforcement learning," Applied Energy, Elsevier, vol. 278(C).
- Narukulla, Ramesh & Chaturvedi, Krishna Raghav & Ojha, Umaprasana & Sharma, Tushar, 2022. "Carbon dioxide capturing evaluation of polyacryloyl hydrazide solutions via rheological analysis for carbon utilization applications," Energy, Elsevier, vol. 241(C).
- Massol, Olivier & Tchung-Ming, Stéphane & Banal-Estañol, Albert, 2018.
"Capturing industrial CO2 emissions in Spain: Infrastructures, costs and break-even prices,"
Energy Policy, Elsevier, vol. 115(C), pages 545-560.
- Olivier Massol & Stéphane Tchung-Ming & Albert Banal-Estanol, 2018. "Capturing industrial CO2 emissions in spain: infrastructures, costs and brek-even prices," Working Papers 1801, Chaire Economie du climat.
- Olivier Massol, 2018. "Capturing Industrial CO2 Emissions in Spain: Infrastructures, Costs, and Break-even Prices," Post-Print hal-04320564, HAL.
- Pao-Yu Oei and Roman Mendelevitch, 2016.
"European Scenarios of CO2 Infrastructure Investment until 2050,"
The Energy Journal, International Association for Energy Economics, vol. 0(Sustainab).
- Oei, Pao-Yu & Mendelevitch, Roman, 2016. "European Scenarios of CO2 Infrastructure Investment until 2050," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 37, pages 171-194.
- Qianlin Zhu & Chuang Wang & Zhihan Fan & Jing Ma & Fu Chen, 2019. "Optimal matching between CO2 sources in Jiangsu province and sinks in Subei‐Southern South Yellow Sea basin, China," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 9(1), pages 95-105, February.
More about this item
Keywords
carbon dioxide capture and storage (CCS); CO 2 pipeline design; pressure drop; pipeline diameter equations; CO 2 transportation;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:9:p:2184-:d:164981. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.