IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i7p1815-d157385.html
   My bibliography  Save this article

Design and Experimental Study of HTSG for Waste to Energy: Analysis of Pressure Difference

Author

Listed:
  • Jeachul Jang

    (Energy Efficiency and Materials Research Division, Korea Institute of Energy Research (KIER), Daejeon 34129, Korea)

  • Sunhee Oh

    (Energy Efficiency and Materials Research Division, Korea Institute of Energy Research (KIER), Daejeon 34129, Korea)

  • Chongpyo Cho

    (Energy Efficiency and Materials Research Division, Korea Institute of Energy Research (KIER), Daejeon 34129, Korea)

  • Seong-Ryong Park

    (Energy Efficiency and Materials Research Division, Korea Institute of Energy Research (KIER), Daejeon 34129, Korea)

Abstract

The purpose of the present study is to analyze pressure difference changes inside a high-temperature steam generator (HTSG), which produces steam using the heat generated by waste incineration and decreases the pressure of the produced steam while increasing its temperature. The high-temperature, low-pressure steam produced by a HTSG is used for hydrogen production. Therefore, the steam temperature must be at least 700 °C, and the pressure must be lower than 300 kPa; hence, a device is needed to increase the steam temperature in the boiler and decrease the steam pressure. The physical behavior of the device was modeled and experimentally validated. The modeling and experimental results demonstrated good agreement when the steam was not preheated; however, an additional pressure drop required consideration of the opposite case.

Suggested Citation

  • Jeachul Jang & Sunhee Oh & Chongpyo Cho & Seong-Ryong Park, 2018. "Design and Experimental Study of HTSG for Waste to Energy: Analysis of Pressure Difference," Energies, MDPI, vol. 11(7), pages 1-14, July.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:7:p:1815-:d:157385
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/7/1815/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/7/1815/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Su Shiung Lam & Howard A. Chase, 2012. "A Review on Waste to Energy Processes Using Microwave Pyrolysis," Energies, MDPI, vol. 5(10), pages 1-24, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bang, You-Ma & Cho, Chong Pyo & Jung, Yongjin & Park, Seong-Ryong & Kim, Joeng-Geun & Park, Sungwook, 2023. "Thermal and flow characteristics of a cylindrical superheated steam generator with helical fins," Energy, Elsevier, vol. 267(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Santhoshkumar, A. & Ramanathan, Anand, 2020. "Recycling of waste engine oil through pyrolysis process for the production of diesel like fuel and its uses in diesel engine," Energy, Elsevier, vol. 197(C).
    2. Huang, Yu-Fong & Kuan, Wen-Hui & Chang, Chun-Yuan, 2018. "Effects of particle size, pretreatment, and catalysis on microwave pyrolysis of corn stover," Energy, Elsevier, vol. 143(C), pages 696-703.
    3. Bhattacharya, Madhuchhanda & Basak, Tanmay, 2016. "A review on the susceptor assisted microwave processing of materials," Energy, Elsevier, vol. 97(C), pages 306-338.
    4. Ocreto, Jherwin B. & Chen, Wei-Hsin & Ubando, Aristotle T. & Park, Young-Kwon & Sharma, Amit Kumar & Ashokkumar, Veeramuthu & Ok, Yong Sik & Kwon, Eilhann E. & Rollon, Analiza P. & De Luna, Mark Danie, 2021. "A critical review on second- and third-generation bioethanol production using microwaved-assisted heating (MAH) pretreatment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    5. Changping Li & Longchen Duan & Songcheng Tan & Victor Chikhotkin, 2018. "Influences on High-Voltage Electro Pulse Boring in Granite," Energies, MDPI, vol. 11(9), pages 1-17, September.
    6. Ge, Shengbo & Foong, Shin Ying & Ma, Nyuk Ling & Liew, Rock Keey & Wan Mahari, Wan Adibah & Xia, Changlei & Yek, Peter Nai Yuh & Peng, Wanxi & Nam, Wai Lun & Lim, Xin Yi & Liew, Chin Mei & Chong, Chi , 2020. "Vacuum pyrolysis incorporating microwave heating and base mixture modification: An integrated approach to transform biowaste into eco-friendly bioenergy products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    7. Huang, Yu-Fong & Cheng, Pei-Hsin & Chiueh, Pei-Te & Lo, Shang-Lien, 2017. "Leucaena biochar produced by microwave torrefaction: Fuel properties and energy efficiency," Applied Energy, Elsevier, vol. 204(C), pages 1018-1025.
    8. Maarten Messagie & Fayçal Boureima & Jan Mertens & Javier Sanfelix & Cathy Macharis & Joeri Van Mierlo, 2013. "The Influence of Allocation on the Carbon Footprint of Electricity Production from Waste Gas, a Case Study for Blast Furnace Gas," Energies, MDPI, vol. 6(3), pages 1-16, March.
    9. Muley, P.D. & Henkel, C.E. & Aguilar, G. & Klasson, K.T. & Boldor, D., 2016. "Ex situ thermo-catalytic upgrading of biomass pyrolysis vapors using a traveling wave microwave reactor," Applied Energy, Elsevier, vol. 183(C), pages 995-1004.
    10. Vuk Petronijević & Aleksandar Đorđević & Miladin Stefanović & Slavko Arsovski & Zdravko Krivokapić & Milan Mišić, 2020. "Energy Recovery through End-of-Life Vehicles Recycling in Developing Countries," Sustainability, MDPI, vol. 12(21), pages 1-26, October.
    11. Ly, Hoang Vu & Kim, Seung-Soo & Woo, Hee Chul & Choi, Jae Hyung & Suh, Dong Jin & Kim, Jinsoo, 2015. "Fast pyrolysis of macroalga Saccharina japonica in a bubbling fluidized-bed reactor for bio-oil production," Energy, Elsevier, vol. 93(P2), pages 1436-1446.
    12. Shah, Syed Asfand Yar & Zeeshan, Muhammad & Farooq, Muhammad Zohaib & Ahmed, Naveed & Iqbal, Naseem, 2019. "Co-pyrolysis of cotton stalk and waste tire with a focus on liquid yield quantity and quality," Renewable Energy, Elsevier, vol. 130(C), pages 238-244.
    13. Sadhukhan, Jhuma & Martinez-Hernandez, Elias & Murphy, Richard J. & Ng, Denny K.S. & Hassim, Mimi H. & Siew Ng, Kok & Yoke Kin, Wan & Jaye, Ida Fahani Md & Leung Pah Hang, Melissa Y. & Andiappan, Vikn, 2018. "Role of bioenergy, biorefinery and bioeconomy in sustainable development: Strategic pathways for Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1966-1987.
    14. Hameed, Zeeshan & Aslam, Muhammad & Khan, Zakir & Maqsood, Khuram & Atabani, A.E. & Ghauri, Moinuddin & Khurram, Muhammad Shahzad & Rehan, Mohammad & Nizami, Abdul-Sattar, 2021. "Gasification of municipal solid waste blends with biomass for energy production and resources recovery: Current status, hybrid technologies and innovative prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    15. Reyes, Y.A. & Pérez, M. & Barrera, E.L. & Martínez, Y. & Cheng, K.K., 2022. "Thermochemical conversion processes of Dichrostachys cinerea as a biofuel: A review of the Cuban case," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    16. Koo, Won-Mo & Jung, Su-Hwa & Kim, Joo-Sik, 2014. "Production of bio-oil with low contents of copper and chlorine by fast pyrolysis of alkaline copper quaternary-treated wood in a fluidized bed reactor," Energy, Elsevier, vol. 68(C), pages 555-561.
    17. Gao, Ying & Wang, Xianhua & Chen, Yingquan & Li, Pan & Liu, Huihui & Chen, Hanping, 2017. "Pyrolysis of rapeseed stalk: Influence of temperature on product characteristics and economic costs," Energy, Elsevier, vol. 122(C), pages 482-491.
    18. Chen, Wei-Hsin & Lin, Bo-Jhih, 2016. "Characteristics of products from the pyrolysis of oil palm fiber and its pellets in nitrogen and carbon dioxide atmospheres," Energy, Elsevier, vol. 94(C), pages 569-578.
    19. Ge, Shengbo & Yek, Peter Nai Yuh & Cheng, Yoke Wang & Xia, Changlei & Wan Mahari, Wan Adibah & Liew, Rock Keey & Peng, Wanxi & Yuan, Tong-Qi & Tabatabaei, Meisam & Aghbashlo, Mortaza & Sonne, Christia, 2021. "Progress in microwave pyrolysis conversion of agricultural waste to value-added biofuels: A batch to continuous approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    20. Song, Zhanlong & Yang, Yaqing & Sun, Jing & Zhao, Xiqiang & Wang, Wenlong & Mao, Yanpeng & Ma, Chunyuan, 2017. "Effect of power level on the microwave pyrolysis of tire powder," Energy, Elsevier, vol. 127(C), pages 571-580.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:7:p:1815-:d:157385. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.