IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i4p771-d138531.html
   My bibliography  Save this article

On the Distribution of Lightning Current among Interconnected Grounding Systems in Medium Voltage Grids

Author

Listed:
  • Guido Ala

    (Department of Energy, Information Engineering and Mathematical Models (DEIM)—University of Palermo, viale delle Scienze-Edificio 9, 90128 Palermo, Italy)

  • Salvatore Favuzza

    (Department of Energy, Information Engineering and Mathematical Models (DEIM)—University of Palermo, viale delle Scienze-Edificio 9, 90128 Palermo, Italy)

  • Elisa Francomano

    (Department of Industrial and Digital Innovation (DIID)—University of Palermo, viale delle Scienze-Edificio 8, 90128 Palermo, Italy)

  • Graziella Giglia

    (Department of Energy, Information Engineering and Mathematical Models (DEIM)—University of Palermo, viale delle Scienze-Edificio 9, 90128 Palermo, Italy)

  • Gaetano Zizzo

    (Department of Energy, Information Engineering and Mathematical Models (DEIM)—University of Palermo, viale delle Scienze-Edificio 9, 90128 Palermo, Italy)

Abstract

This paper presents the results of a first investigation on the effects of lightning stroke on medium voltage installations’ grounding systems, interconnected with the metal shields of the Medium Voltage (MV) distribution grid cables or with bare buried copper ropes. The study enables us to evaluate the distribution of the lightning current among interconnected ground electrodes in order to estimate if the interconnection, usually created to reduce ground potential rise during a single-line-to-ground fault, can give place to dangerous situations far from the installation hit by the lightning stroke. Four different case studies of direct lightning stroke are presented and discussed: (1) two secondary substations interconnected by the cables’ shields; (2) two secondary substations interconnected by a bare buried conductor; (3) a high voltage/medium voltage station connected with a secondary substation by the medium voltage cables’ shields; (4) a high voltage/medium voltage station connected with a secondary substation by a bare buried conductor. The results of the simulations show that a higher peak-lowering action on the lighting-stroke current occurs due to the use of bare conductors as interconnection elements in comparison to the cables’ shields.

Suggested Citation

  • Guido Ala & Salvatore Favuzza & Elisa Francomano & Graziella Giglia & Gaetano Zizzo, 2018. "On the Distribution of Lightning Current among Interconnected Grounding Systems in Medium Voltage Grids," Energies, MDPI, vol. 11(4), pages 1-16, March.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:4:p:771-:d:138531
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/4/771/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/4/771/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nur Hazirah Zaini & Mohd Zainal Abidin Ab. Kadir & Mohd Amran Mohd Radzi & Mahdi Izadi & Norhafiz Azis & Nor Izzati Ahmad & Mohd Solehin Mohd Nasir, 2017. "Lightning Surge Analysis on a Large Scale Grid-Connected Solar Photovoltaic System," Energies, MDPI, vol. 10(12), pages 1-18, December.
    2. Ala, Guido & Fasshauer, Gregory E. & Francomano, Elisa & Ganci, Salvatore & McCourt, Michael J., 2017. "An augmented MFS approach for brain activity reconstruction," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 141(C), pages 3-15.
    3. Ala, Guido & Francomano, Elisa & Ganci, Salvatore, 2015. "Unconditionally stable meshless integration of time-domain Maxwell’s curl equations," Applied Mathematics and Computation, Elsevier, vol. 255(C), pages 157-164.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhuoran Liu & Weidong Shi & Bo Zhang, 2021. "Numerical Analysis of Transient Performance of Grounding Grid with Lightning Rod Installed on Multi-Grounded Frame," Energies, MDPI, vol. 14(12), pages 1-13, June.
    2. Donghui Luo & Yongxing Cao & Yu Zhang & Shijun Xie & Chenmeng Zhang & Shuping Cao, 2021. "Study on Structural Parameters and Analysis Method of Soil Successive Impulse Discharge Channel," Energies, MDPI, vol. 14(4), pages 1-17, February.
    3. Giovanni Aiello & Salvatore Alfonzetti & Santi Agatino Rizzo & Nunzio Salerno, 2019. "Thin Conductor Modelling Combined with a Hybrid Numerical Method to Evaluate the Transferred Potential from Isolated Grounding System," Energies, MDPI, vol. 12(7), pages 1-11, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francomano, E. & Paliaga, M., 2018. "Highlighting numerical insights of an efficient SPH method," Applied Mathematics and Computation, Elsevier, vol. 339(C), pages 899-915.
    2. Nurul A. A. Latiff & Hazlee A. Illias & Ab H. A. Bakar & Sameh Z. A. Dabbak, 2018. "Measurement and Modelling of Leakage Current Behaviour in ZnO Surge Arresters under Various Applied Voltage Amplitudes and Pollution Conditions," Energies, MDPI, vol. 11(4), pages 1-16, April.
    3. Francomano, Elisa & Hilker, Frank M. & Paliaga, Marta & Venturino, Ezio, 2018. "Separatrix reconstruction to identify tipping points in an eco-epidemiological model," Applied Mathematics and Computation, Elsevier, vol. 318(C), pages 80-91.
    4. Mohd Effendi Amran & Mohd Nabil Muhtazaruddin & Firdaus Muhammad-Sukki & Nurul Aini Bani & Tauran Zaidi Ahmad Zaidi & Khairul Azmy Kamaluddin & Jorge Alfredo Ardila-Rey, 2019. "Photovoltaic Expansion-Limit through a Net Energy Metering Scheme for Selected Malaysian Public Hospitals," Sustainability, MDPI, vol. 11(18), pages 1-30, September.
    5. Mohd Ashraf Zainol Abidin & Muhammad Nasiruddin Mahyuddin & Muhammad Ammirrul Atiqi Mohd Zainuri, 2021. "Solar Photovoltaic Architecture and Agronomic Management in Agrivoltaic System: A Review," Sustainability, MDPI, vol. 13(14), pages 1-27, July.
    6. Guoming Wang & Woo-Hyun Kim & Gyung-Suk Kil & Dae-Won Park & Sung-Wook Kim, 2019. "An Intelligent Lightning Warning System Based on Electromagnetic Field and Neural Network," Energies, MDPI, vol. 12(7), pages 1-11, April.
    7. Francomano, Elisa & Paliaga, Marta, 2020. "A normalized iterative Smoothed Particle Hydrodynamics method," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 176(C), pages 171-180.
    8. Carmen B. Rosa & Graciele Rediske & Paula D. Rigo & João Francisco M. Wendt & Leandro Michels & Julio Cezar M. Siluk, 2018. "Development of a Computational Tool for Measuring Organizational Competitiveness in the Photovoltaic Power Plants," Energies, MDPI, vol. 11(4), pages 1-13, April.
    9. Ya'acob, M.E. & Lu, Li & Zulkifli, S.A. & Roslan, N. & Ahmad, W.F.H. Wan, 2023. "Agrivoltaic approach in improving soil resistivity in large scale solar farms for energy sustainability," Applied Energy, Elsevier, vol. 352(C).
    10. Nor Izzati Ahmad & Zaipatimah Ali & Mohd Zainal Abidin Ab. Kadir & Miszaina Osman & Nur Hazirah Zaini & Muhammad Hakirin Roslan, 2021. "Analysis of Lightning-Induced Voltages Effect with SPD Placement for Sustainable Operation in Hybrid Solar PV-Battery Energy Storage System," Sustainability, MDPI, vol. 13(12), pages 1-23, June.
    11. Antonelli, L. & Francomano, E. & Gregoretti, F., 2021. "A CUDA-based implementation of an improved SPH method on GPU," Applied Mathematics and Computation, Elsevier, vol. 409(C).
    12. Kaihua Jiang & Lin Du & Huan Chen & Feng Yang & Yubo Wang, 2019. "Non-Contact Measurement and Polarity Discrimination-Based Identification Method for Direct Lightning Strokes," Energies, MDPI, vol. 12(2), pages 1-17, January.
    13. Hetita, Ibrahim & Zalhaf, Amr S. & Mansour, Diaa-Eldin A. & Han, Yang & Yang, Ping & Wang, Congling, 2022. "Modeling and protection of photovoltaic systems during lightning strikes: A review," Renewable Energy, Elsevier, vol. 184(C), pages 134-148.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:4:p:771-:d:138531. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.