IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i2p366-d130199.html
   My bibliography  Save this article

Applying Petroleum the Pressure Buildup Well Test Procedure on Thermal Response Test—A Novel Method for Analyzing Temperature Recovery Period

Author

Listed:
  • Tomislav Kurevija

    (Faculty of Mining, Geology and Petroleum Engineering, University of Zagreb, 10000 Zagreb, Croatia)

  • Kristina Strpić

    (Faculty of Mining, Geology and Petroleum Engineering, University of Zagreb, 10000 Zagreb, Croatia)

  • Sonja Koščak-Kolin

    (Faculty of Mining, Geology and Petroleum Engineering, University of Zagreb, 10000 Zagreb, Croatia)

Abstract

The theory of Thermal Response Testing (TRT) is a well-known part of the sizing process of the geothermal exchange system. Multiple parameters influence the accuracy of effective ground thermal conductivity measurement; like testing time, variable power, climate interferences, groundwater effect, etc. To improve the accuracy of the TRT, we introduced a procedure to additionally analyze falloff temperature decline after the power test. The method is based on a premise of analogy between TRT and petroleum well testing, since the origin of both procedures lies in the diffusivity equation with solutions for heat conduction or pressure analysis during radial flow. Applying pressure build-up test interpretation techniques to borehole heat exchanger testing, greater accuracy could be achieved since ground conductivity could be obtained from this period. Analysis was conducted on a coaxial exchanger with five different power steps, and with both direct and reverse flow regimes. Each test was set with 96 h of classical TRT, followed by 96 h of temperature decline, making for almost 2000 h of cumulative borehole testing. Results showed that the ground conductivity value could vary by as much as 25%, depending on test time, seasonal period and power fluctuations, while the thermal conductivity obtained from the falloff period provided more stable values, with only a 10% value variation.

Suggested Citation

  • Tomislav Kurevija & Kristina Strpić & Sonja Koščak-Kolin, 2018. "Applying Petroleum the Pressure Buildup Well Test Procedure on Thermal Response Test—A Novel Method for Analyzing Temperature Recovery Period," Energies, MDPI, vol. 11(2), pages 1-22, February.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:2:p:366-:d:130199
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/2/366/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/2/366/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Paolo Conti, 2016. "Dimensionless Maps for the Validity of Analytical Ground Heat Transfer Models for GSHP Applications," Energies, MDPI, vol. 9(11), pages 1-21, October.
    2. Borja Badenes & Miguel Ángel Mateo Pla & Lenin G. Lemus-Zúñiga & Begoña Sáiz Mauleón & Javier F. Urchueguía, 2017. "On the Influence of Operational and Control Parameters in Thermal Response Testing of Borehole Heat Exchangers," Energies, MDPI, vol. 10(9), pages 1-15, September.
    3. Wright, Andrew & Firth, Steven, 2007. "The nature of domestic electricity-loads and effects of time averaging on statistics and on-site generation calculations," Applied Energy, Elsevier, vol. 84(4), pages 389-403, April.
    4. Bujok, Petr & Grycz, David & Klempa, Martin & Kunz, Antonín & Porzer, Michal & Pytlik, Adam & Rozehnal, Zdeněk & Vojčinák, Petr, 2014. "Assessment of the influence of shortening the duration of TRT (thermal response test) on the precision of measured values," Energy, Elsevier, vol. 64(C), pages 120-129.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alessandro Franco & Paolo Conti, 2020. "Clearing a Path for Ground Heat Exchange Systems: A Review on Thermal Response Test (TRT) Methods and a Geotechnical Routine Test for Estimating Soil Thermal Properties," Energies, MDPI, vol. 13(11), pages 1-21, June.
    2. Joanna Piotrowska-Woroniak, 2021. "Determination of the Selected Wells Operational Power with Borehole Heat Exchangers Operating in Real Conditions, Based on Experimental Tests," Energies, MDPI, vol. 14(9), pages 1-21, April.
    3. Tomislav Kurevija & Marija Macenić & Martina Tuschl, 2023. "Drilling Deeper in Shallow Geoexchange Heat Pump Systems—Thermogeological, Energy and Hydraulic Benefits and Restraints," Energies, MDPI, vol. 16(18), pages 1-17, September.
    4. Joanna Piotrowska-Woroniak, 2021. "Assessment of Ground Regeneration around Borehole Heat Exchangers between Heating Seasons in Cold Climates: A Case Study in Bialystok (NE, Poland)," Energies, MDPI, vol. 14(16), pages 1-32, August.
    5. Tomislav Kurevija & Adib Kalantar & Marija Macenić & Josipa Hranić, 2019. "Investigation of Steady-State Heat Extraction Rates for Different Borehole Heat Exchanger Configurations from the Aspect of Implementation of New TurboCollector™ Pipe System Design," Energies, MDPI, vol. 12(8), pages 1-17, April.
    6. Yuridiana Rocio Galindo-Luna & Efraín Gómez-Arias & Rosenberg J. Romero & Eduardo Venegas-Reyes & Moisés Montiel-González & Helene Emmi Karin Unland-Weiss & Pedro Pacheco-Hernández & Antonio González-, 2018. "Hybrid Solar-Geothermal Energy Absorption Air-Conditioning System Operating with NaOH-H 2 O—Las Tres Vírgenes (Baja California Sur), “La Reforma” Case," Energies, MDPI, vol. 11(5), pages 1-23, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hans Schwarz & Borja Badenes & Jan Wagner & José Manuel Cuevas & Javier Urchueguía & David Bertermann, 2021. "A Case Study of Thermal Evolution in the Vicinity of Geothermal Probes Following a Distributed TRT Method," Energies, MDPI, vol. 14(9), pages 1-17, May.
    2. Alessandro Franco & Paolo Conti, 2020. "Clearing a Path for Ground Heat Exchange Systems: A Review on Thermal Response Test (TRT) Methods and a Geotechnical Routine Test for Estimating Soil Thermal Properties," Energies, MDPI, vol. 13(11), pages 1-21, June.
    3. Yongjie Ma & Yanjun Zhang & Yuxiang Cheng & Yu Zhang & Xuefeng Gao & Hao Deng & Xin Zhang, 2022. "Influence of Different Heat Loads and Durations on the Field Thermal Response Test," Energies, MDPI, vol. 15(22), pages 1-17, November.
    4. Aneta Sapińska-Sliwa & Marc A. Rosen & Andrzej Gonet & Joanna Kowalczyk & Tomasz Sliwa, 2019. "A New Method Based on Thermal Response Tests for Determining Effective Thermal Conductivity and Borehole Resistivity for Borehole Heat Exchangers," Energies, MDPI, vol. 12(6), pages 1-22, March.
    5. Zhang, Changxing & Song, Wei & Liu, Yufeng & Kong, Xiangqiang & Wang, Qing, 2019. "Effect of vertical ground temperature distribution on parameter estimation of in-situ thermal response test with unstable heat rate," Renewable Energy, Elsevier, vol. 136(C), pages 264-274.
    6. Tomasz Sliwa & Kinga Jarosz & Marc A. Rosen & Anna Sojczyńska & Aneta Sapińska-Śliwa & Andrzej Gonet & Karolina Fąfera & Tomasz Kowalski & Martyna Ciepielowska, 2020. "Influence of Rotation Speed and Air Pressure on the Down the Hole Drilling Velocity for Borehole Heat Exchanger Installation," Energies, MDPI, vol. 13(11), pages 1-18, May.
    7. Zheng, Menglian & Meinrenken, Christoph J. & Lackner, Klaus S., 2014. "Agent-based model for electricity consumption and storage to evaluate economic viability of tariff arbitrage for residential sector demand response," Applied Energy, Elsevier, vol. 126(C), pages 297-306.
    8. Choi, Wonjun & Menberg, Kathrin & Kikumoto, Hideki & Heo, Yeonsook & Choudhary, Ruchi & Ooka, Ryozo, 2018. "Bayesian inference of structural error in inverse models of thermal response tests," Applied Energy, Elsevier, vol. 228(C), pages 1473-1485.
    9. Félix Ruiz-Calvo & Carla Montagud & Antonio Cazorla-Marín & José M. Corberán, 2017. "Development and Experimental Validation of a TRNSYS Dynamic Tool for Design and Energy Optimization of Ground Source Heat Pump Systems," Energies, MDPI, vol. 10(10), pages 1-21, September.
    10. Joanna Piotrowska-Woroniak, 2021. "Assessment of Ground Regeneration around Borehole Heat Exchangers between Heating Seasons in Cold Climates: A Case Study in Bialystok (NE, Poland)," Energies, MDPI, vol. 14(16), pages 1-32, August.
    11. C, Alimonti & P, Conti & E, Soldo, 2019. "A comprehensive exergy evaluation of a deep borehole heat exchanger coupled with a ORC plant: the case study of Campi Flegrei," Energy, Elsevier, vol. 189(C).
    12. Davide Menegazzo & Giulia Lombardo & Sergio Bobbo & Michele De Carli & Laura Fedele, 2022. "State of the Art, Perspective and Obstacles of Ground-Source Heat Pump Technology in the European Building Sector: A Review," Energies, MDPI, vol. 15(7), pages 1-25, April.
    13. Borja Badenes & Miguel Ángel Mateo Pla & Teresa Magraner & Javier Soriano & Javier F. Urchueguía, 2020. "Theoretical and Experimental Cost–Benefit Assessment of Borehole Heat Exchangers (BHEs) According to Working Fluid Flow Rate," Energies, MDPI, vol. 13(18), pages 1-29, September.
    14. Kools, L. & Phillipson, F., 2016. "Data granularity and the optimal planning of distributed generation," Energy, Elsevier, vol. 112(C), pages 342-352.
    15. Zhang, Xueping & Han, Zongwei & Ji, Qiang & Zhang, Hongzhi & Li, Xiuming, 2021. "Thermal response tests for the identification of soil thermal parameters: A review," Renewable Energy, Elsevier, vol. 173(C), pages 1123-1135.
    16. Tang, Fujiao & Nowamooz, Hossein, 2019. "Sensitive analysis on the effective soil thermal conductivity of the Thermal Response Test considering various testing times, field conditions and U-pipe lengths," Renewable Energy, Elsevier, vol. 143(C), pages 1732-1743.
    17. Papadopoulos, V. & Knockaert, J. & Develder, C. & Desmet, J., 2019. "Investigating the need for real time measurements in industrial wind power systems combined with battery storage," Applied Energy, Elsevier, vol. 247(C), pages 559-571.
    18. Baetens, R. & De Coninck, R. & Van Roy, J. & Verbruggen, B. & Driesen, J. & Helsen, L. & Saelens, D., 2012. "Assessing electrical bottlenecks at feeder level for residential net zero-energy buildings by integrated system simulation," Applied Energy, Elsevier, vol. 96(C), pages 74-83.
    19. Mauser, Ingo & Müller, Jan & Allerding, Florian & Schmeck, Hartmut, 2016. "Adaptive building energy management with multiple commodities and flexible evolutionary optimization," Renewable Energy, Elsevier, vol. 87(P2), pages 911-921.
    20. Amoako, Samuel & Andoh, Francis Kwaw & Asmah, Emmanuel Ekow, 2023. "Household structure and electricity consumption in Ghana," Energy Policy, Elsevier, vol. 182(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:2:p:366-:d:130199. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.