IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i2p337-d129984.html
   My bibliography  Save this article

NOx and SO 2 Emissions during Co-Combustion of RDF and Anthracite in the Environment of Precalciner

Author

Listed:
  • Xiaolin Chen

    (State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
    School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China)

  • Junlin Xie

    (State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
    Research and Test Center of Materials, Wuhan University of Technology, Wuhan 430070, China)

  • Shuxia Mei

    (State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
    School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China)

  • Feng He

    (State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
    School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China)

Abstract

Based on the temperature and O 2 concentration in the cement precalciner, co-combustion of anthracite and Refuse Derived Fuel (RDF) were investigated using a thermogravimetric analyzer (TGA) and a double furnaces reactor. Both the TGA and double furnaces reactor results indicated that the co-combustion characteristics were the linear additive effect in the devolatilization stage, while it was the synergistic effect in the char combustion stage. During co-combustion, at 900 °C, NOx released rapidly during the devolatilization stage, but in the char combustion stage the NOx formation were inhibited; at 800 °C, a large amount of CO formed, which could reduce the NOx. In general, at 900 °C and 800 °C, the application of co-combustion could lower the NOx emission yield and lower the NOx conversion. By combining the combustion characteristics with the XRD results, it was indicated that during co-combustion, at 800 °C, the SO 2 formation reaction was inhibited, and the SO 2 yield and conversion were quite low.

Suggested Citation

  • Xiaolin Chen & Junlin Xie & Shuxia Mei & Feng He, 2018. "NOx and SO 2 Emissions during Co-Combustion of RDF and Anthracite in the Environment of Precalciner," Energies, MDPI, vol. 11(2), pages 1-13, February.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:2:p:337-:d:129984
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/2/337/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/2/337/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chui, E.H. & Majeski, A.J. & Douglas, M.A. & Tan, Y. & Thambimuthu, K.V., 2004. "Numerical investigation of oxy-coal combustion to evaluate burner and combustor design concepts," Energy, Elsevier, vol. 29(9), pages 1285-1296.
    2. Lee, Jong-Min & Kim, Down-Won & Kim, Jae-Sung & Na, Jeong-Geol & Lee, See-Hoon, 2010. "Co-combustion of refuse derived fuel with Korean anthracite in a commercial circulating fluidized bed boiler," Energy, Elsevier, vol. 35(7), pages 2814-2818.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Granados, David A. & Chejne, Farid & Mejía, Juan M. & Gómez, Carlos A. & Berrío, Ariel & Jurado, William J., 2014. "Effect of flue gas recirculation during oxy-fuel combustion in a rotary cement kiln," Energy, Elsevier, vol. 64(C), pages 615-625.
    2. Rashwan, Sherif S. & Ibrahim, Abdelmaged H. & Abou-Arab, Tharwat W. & Nemitallah, Medhat A. & Habib, Mohamed A., 2017. "Experimental study of atmospheric partially premixed oxy-combustion flames anchored over a perforated plate burner," Energy, Elsevier, vol. 122(C), pages 159-167.
    3. Riaza, J. & Álvarez, L. & Gil, M.V. & Pevida, C. & Pis, J.J. & Rubiera, F., 2011. "Effect of oxy-fuel combustion with steam addition on coal ignition and burnout in an entrained flow reactor," Energy, Elsevier, vol. 36(8), pages 5314-5319.
    4. Oh, Jeongseog, 2016. "Spectral characteristics of a premixed oxy-methane flame in atmospheric conditions," Energy, Elsevier, vol. 116(P1), pages 986-997.
    5. Lee, Jong Min & Kim, Dong Won & Kim, Jae Sung, 2011. "Characteristics of co-combustion of anthracite with bituminous coal in a 200-MWe circulating fluidized bed boiler," Energy, Elsevier, vol. 36(9), pages 5703-5709.
    6. Du, Shenglei & Wang, Xianhua & Shao, Jingai & Yang, Haiping & Xu, Guangfu & Chen, Hanping, 2014. "Releasing behavior of chlorine and fluorine during agricultural waste pyrolysis," Energy, Elsevier, vol. 74(C), pages 295-300.
    7. Yin, Chungen & Yan, Jinyue, 2016. "Oxy-fuel combustion of pulverized fuels: Combustion fundamentals and modeling," Applied Energy, Elsevier, vol. 162(C), pages 742-762.
    8. Chen, Zhichao & Li, Zhengqi & Zhu, Qunyi & Jing, Jianping, 2011. "Gas/particle flow and combustion characteristics and NOx emissions of a new swirl coal burner," Energy, Elsevier, vol. 36(2), pages 709-723.
    9. Kopczyński, Marcin & Lasek, Janusz A. & Iluk, Andrzej & Zuwała, Jarosław, 2017. "The co-combustion of hard coal with raw and torrefied biomasses (willow (Salix viminalis), olive oil residue and waste wood from furniture manufacturing)," Energy, Elsevier, vol. 140(P1), pages 1316-1325.
    10. Zhang, Xiaoyu & Zhu, Shujun & Zhu, Jianguo & Liu, Yuhua & Zhang, Jiahang & Hui, Jicheng & Ding, Hongliang & Cao, Xiaoyang & Lyu, Qinggang, 2023. "Preheating and combustion characteristics of anthracite under O2/N2, O2/CO2 and O2/CO2/H2O atmospheres," Energy, Elsevier, vol. 274(C).
    11. Ling, Zhongqian & Ling, Bo & Kuang, Min & Li, Zhengqi & Lu, Ye, 2017. "Comparison of airflow, coal combustion, NOx emissions, and slagging characteristics among three large-scale MBEL down-fired boilers manufactured at different times," Applied Energy, Elsevier, vol. 187(C), pages 689-705.
    12. Mlonka-Mędrala, Agata & Dziok, Tadeusz & Magdziarz, Aneta & Nowak, Wojciech, 2021. "Composition and properties of fly ash collected from a multifuel fluidized bed boiler co-firing refuse derived fuel (RDF) and hard coal," Energy, Elsevier, vol. 234(C).
    13. Ahn, Seong Yool & Eom, Seong Yong & Rhie, Young Hoon & Sung, Yon Mo & Moon, Cheor Eon & Choi, Gyung Min & Kim, Duck Jool, 2013. "Application of refuse fuels in a direct carbon fuel cell system," Energy, Elsevier, vol. 51(C), pages 447-456.
    14. Karim, Md Rezwanul & Bhuiyan, Arafat Ahmed & Sarhan, Abd Alhamid Rafea & Naser, Jamal, 2020. "CFD simulation of biomass thermal conversion under air/oxy-fuel conditions in a reciprocating grate boiler," Renewable Energy, Elsevier, vol. 146(C), pages 1416-1428.
    15. Kuang, Min & Zhu, Qunyi & Ling, Zhongqian & Ti, Shuguang & Li, Zhengqi, 2017. "Improving gas/particle flow deflection and asymmetric combustion of a 600 MWe supercritical down-fired boiler by increasing its upper furnace height," Energy, Elsevier, vol. 127(C), pages 581-593.
    16. Małgorzata Wzorek, 2020. "Evaluating the Potential for Combustion of Biofuels in Grate Furnaces," Energies, MDPI, vol. 13(8), pages 1-15, April.
    17. Liang, Xiaorui & Wang, Qinhui & Luo, Zhongyang & Eddings, Eric & Ring, Terry & Li, Simin & Lin, Junjie & Xue, Shuang & Han, Long & Xie, Guilin, 2019. "Experimental and numerical investigation on sulfur transformation in pressurized oxy-fuel combustion of pulverized coal," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    18. Kalisz, Sylwester & Wejkowski, Robert & Maj, Izabella & Garbacz, Przemysław, 2023. "A novel approach to the dry desulfurization process by means of sodium bicarbonate: A full-scale study on SO2 emission and geochemistry of fly ash," Energy, Elsevier, vol. 279(C).
    19. Oh, Jeongseog & Noh, Dongsoon, 2012. "Laminar burning velocity of oxy-methane flames in atmospheric condition," Energy, Elsevier, vol. 45(1), pages 669-675.
    20. Álvarez, L. & Yin, C. & Riaza, J. & Pevida, C. & Pis, J.J. & Rubiera, F., 2013. "Oxy-coal combustion in an entrained flow reactor: Application of specific char and volatile combustion and radiation models for oxy-firing conditions," Energy, Elsevier, vol. 62(C), pages 255-268.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:2:p:337-:d:129984. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.