IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i12p3293-d185470.html
   My bibliography  Save this article

Effects of the Second-Stage of Rotor with Single Abnormal Blade Angle on Rotating Stall of a Two-Stage Variable Pitch Axial Fan

Author

Listed:
  • Lei Zhang

    (School of Energy, Power and Mechanical Engineering, North China Electric Power University, Baoding 071003, China)

  • Liang Zhang

    (School of Energy, Power and Mechanical Engineering, North China Electric Power University, Baoding 071003, China)

  • Qian Zhang

    (School of Energy, Power and Mechanical Engineering, North China Electric Power University, Baoding 071003, China)

  • Kuan Jiang

    (School of Energy, Power and Mechanical Engineering, North China Electric Power University, Baoding 071003, China)

  • Yuan Tie

    (School of Energy, Power and Mechanical Engineering, North China Electric Power University, Baoding 071003, China)

  • Songling Wang

    (School of Energy, Power and Mechanical Engineering, North China Electric Power University, Baoding 071003, China)

Abstract

It is of great value to study the impact of abnormal blade installation angle on the inducement mechanism of rotating stall to achieve the active control of rotating stall in an axial fan. Based on throttle value function and SST k-ω turbulence model, numerical simulations of the unsteady flow process in stall condition of an axial flow fan with adjustable vanes were carried out, and the influence mechanism of abnormal stagger angle of a single blade in the second stage rotor on induced position and type of stall inception and evolution process of rotating stall were analyzed. The results show that compared with synchronous adjustment of blade angle, the blade with abnormal stagger angle will cause the increase of flow rate at the beginning of stall and make the fan fall into an unstable condition in advance. The existence of blade with abnormal angle does not cause the change of the induced position and type of stall inception and the inducement mechanism of rotating stall, which are the same as the axial fan with normal blade angle. Moreover, the single blade with abnormal deviation angle has important impacts on the 3D unsteady evolution process from stall inception to stall cell formation in two rotors.

Suggested Citation

  • Lei Zhang & Liang Zhang & Qian Zhang & Kuan Jiang & Yuan Tie & Songling Wang, 2018. "Effects of the Second-Stage of Rotor with Single Abnormal Blade Angle on Rotating Stall of a Two-Stage Variable Pitch Axial Fan," Energies, MDPI, vol. 11(12), pages 1-18, November.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:12:p:3293-:d:185470
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/12/3293/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/12/3293/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lei Zhang & Chuang Yan & Ruiyang He & Kang Li & Qian Zhang, 2017. "Numerical Study on the Acoustic Characteristics of an Axial Fan under Rotating Stall Condition," Energies, MDPI, vol. 10(12), pages 1-13, November.
    2. Li, Chunxi & Lin, Qing & Ding, Xueliang & Ye, Xuemin, 2016. "Performance, aeroacoustics and feature extraction of an axial flow fan with abnormal blade angle," Energy, Elsevier, vol. 103(C), pages 322-339.
    3. Ye, Xuemin & Ding, Xueliang & Zhang, Jiankun & Li, Chunxi, 2017. "Numerical simulation of pressure pulsation and transient flow field in an axial flow fan," Energy, Elsevier, vol. 129(C), pages 185-200.
    4. Giorgio Pavesi & Giovanna Cavazzini & Guido Ardizzon, 2016. "Numerical Analysis of the Transient Behaviour of a Variable Speed Pump-Turbine during a Pumping Power Reduction Scenario," Energies, MDPI, vol. 9(7), pages 1-15, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Youhao & Sun, Lihui & Guo, Chang & He, Suoying & Gao, Ming & Xu, Qinghua & Zhang, Qiang, 2023. "Vibration characteristics and strength analysis of two-stage variable-pitch axial-flow fan based on fluid-solid coupling method," Energy, Elsevier, vol. 284(C).
    2. Xuemin Ye & Fuwei Fan & Ruixing Zhang & Chunxi Li, 2019. "Prediction of Performance of a Variable-Pitch Axial Fan with Forward-Skewed Blades," Energies, MDPI, vol. 12(12), pages 1-20, June.
    3. Yong-In Kim & Sang-Yeol Lee & Kyoung-Yong Lee & Sang-Ho Yang & Young-Seok Choi, 2020. "Numerical Investigation of Performance and Flow Characteristics of a Tunnel Ventilation Axial Fan with Thickness Profile Treatments of NACA Airfoil," Energies, MDPI, vol. 13(21), pages 1-29, November.
    4. Wei Yuan & Fengzhong Sun & Yuanbin Zhao & Xuehong Chen & Ying Li & Xiaolei Lyu, 2020. "Numerical Study on the Influence Mechanism of Crosswind on Frozen Phenomena in a Direct Air-Cooled System," Energies, MDPI, vol. 13(15), pages 1-18, July.
    5. Wei Yuan & Fengzhong Sun & Ruqing Liu & Xuehong Chen & Ying Li, 2020. "The Effect of Air Parameters on the Evaporation Loss in a Natural Draft Counter-Flow Wet Cooling Tower," Energies, MDPI, vol. 13(23), pages 1-16, November.
    6. Djordje S. Čantrak & Novica Z. Janković, 2022. "Turbulence Structure and Dynamics Investigation of Turbulent Swirl Flow in Pipe Using High-Speed Stereo PIV Data," Energies, MDPI, vol. 15(15), pages 1-13, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ye, Xuemin & Zheng, Nan & Hu, Jiami & Li, Chunxi & Xue, Zhanpu, 2022. "Numerical investigation of the benefits of serrated Gurney flaps on an axial flow fan," Energy, Elsevier, vol. 252(C).
    2. Liu, Xue & Liu, Jian & Wang, Dong & Zhao, Long, 2021. "Experimental and numerical simulation investigations of an axial flow fan performance in high-altitude environments," Energy, Elsevier, vol. 234(C).
    3. Zhang, Lei & He, Ruiyang & Wang, Xin & Zhang, Qian & Wang, Songling, 2019. "Study on static and dynamic characteristics of an axial fan with abnormal blade under rotating stall conditions," Energy, Elsevier, vol. 170(C), pages 305-325.
    4. Wang, Youhao & Sun, Lihui & Guo, Chang & He, Suoying & Gao, Ming & Xu, Qinghua & Zhang, Qiang, 2023. "Vibration characteristics and strength analysis of two-stage variable-pitch axial-flow fan based on fluid-solid coupling method," Energy, Elsevier, vol. 284(C).
    5. Huixiang Chen & Daqing Zhou & Yuan Zheng & Shengwen Jiang & An Yu & You Guo, 2018. "Load Rejection Transient Process Simulation of a Kaplan Turbine Model by Co-Adjusting Guide Vanes and Runner Blades," Energies, MDPI, vol. 11(12), pages 1-18, November.
    6. Chengshuo Wu & Jun Yang & Shuai Yang & Peng Wu & Bin Huang & Dazhuan Wu, 2023. "A Review of Fluid-Induced Excitations in Centrifugal Pumps," Mathematics, MDPI, vol. 11(4), pages 1-20, February.
    7. Chang-Gi Min & Mun-Kyeom Kim, 2017. "Flexibility-Based Reserve Scheduling of Pumped Hydroelectric Energy Storage in Korea," Energies, MDPI, vol. 10(10), pages 1-13, September.
    8. Jianzhong Zhou & Yanhe Xu & Yang Zheng & Yuncheng Zhang, 2017. "Optimization of Guide Vane Closing Schemes of Pumped Storage Hydro Unit Using an Enhanced Multi-Objective Gravitational Search Algorithm," Energies, MDPI, vol. 10(7), pages 1-23, July.
    9. Yong-In Kim & Sang-Yeol Lee & Kyoung-Yong Lee & Sang-Ho Yang & Young-Seok Choi, 2020. "Numerical Investigation of Performance and Flow Characteristics of a Tunnel Ventilation Axial Fan with Thickness Profile Treatments of NACA Airfoil," Energies, MDPI, vol. 13(21), pages 1-29, November.
    10. Jiao, Weixuan & Chen, Hongjun & Cheng, Li & Zhang, Bowen & Gu, Yangdong, 2023. "Energy loss and pressure fluctuation characteristics of coastal two-way channel pumping stations under the ultra-low head condition," Energy, Elsevier, vol. 278(PA).
    11. Baocheng Zhou & Shaochun Ma & Weiqing Li & Wenzhi Li & Cong Peng, 2023. "Study on the Influence Mechanism of Energy Consumption of Sugarcane Harvester Extractor by Fluid Simulation and Experiment," Agriculture, MDPI, vol. 13(9), pages 1-20, August.
    12. Ye, Xuemin & Ding, Xueliang & Zhang, Jiankun & Li, Chunxi, 2017. "Numerical simulation of pressure pulsation and transient flow field in an axial flow fan," Energy, Elsevier, vol. 129(C), pages 185-200.
    13. Xuemin Ye & Fuwei Fan & Ruixing Zhang & Chunxi Li, 2019. "Prediction of Performance of a Variable-Pitch Axial Fan with Forward-Skewed Blades," Energies, MDPI, vol. 12(12), pages 1-20, June.
    14. Li, Deyou & Fu, Xiaolong & Zuo, Zhigang & Wang, Hongjie & Li, Zhenggui & Liu, Shuhong & Wei, Xianzhu, 2019. "Investigation methods for analysis of transient phenomena concerning design and operation of hydraulic-machine systems—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 26-46.
    15. Li, Deyou & Zuo, Zhigang & Wang, Hongjie & Liu, Shuhong & Wei, Xianzhu & Qin, Daqing, 2019. "Review of positive slopes on pump performance characteristics of pump-turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 901-916.
    16. Martínez-Lucas, Guillermo & Pérez-Díaz, Juan I. & Chazarra, Manuel & Sarasúa, José I. & Cavazzini, Giovanna & Pavesi, Giorgio & Ardizzon, Guido, 2019. "Risk of penstock fatigue in pumped-storage power plants operating with variable speed in pumping mode," Renewable Energy, Elsevier, vol. 133(C), pages 636-646.
    17. Yonggang Gou & Xiuzhi Shi & Jian Zhou & Xianyang Qiu & Xin Chen, 2017. "Characterization and Effects of the Shock Losses in a Parallel Fan Station in the Underground Mine," Energies, MDPI, vol. 10(6), pages 1-20, June.
    18. Shafiqur Rehman & Md. Mahbub Alam & Luai M. Alhems & M. Mujahid Rafique, 2018. "Horizontal Axis Wind Turbine Blade Design Methodologies for Efficiency Enhancement—A Review," Energies, MDPI, vol. 11(3), pages 1-34, February.
    19. Wilson Cesar Sant’Ana & Robson Bauwelz Gonzatti & Germano Lambert-Torres & Erik Leandro Bonaldi & Bruno Silva Torres & Pedro Andrade de Oliveira & Rondineli Rodrigues Pereira & Luiz Eduardo Borges-da-, 2019. "Development and 24 Hour Behavior Analysis of a Peak-Shaving Equipment with Battery Storage," Energies, MDPI, vol. 12(11), pages 1-22, May.
    20. Dawid Romik & Ireneusz Czajka, 2022. "Numerical Investigation of the Sensitivity of the Acoustic Power Level to Changes in Selected Design Parameters of an Axial Fan," Energies, MDPI, vol. 15(4), pages 1-19, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:12:p:3293-:d:185470. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.