IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i10p2649-d173658.html
   My bibliography  Save this article

Adequacy Assessment of Wind Integrated Generating Systems Incorporating Demand Response and Battery Energy Storage System

Author

Listed:
  • Jiashen Teh

    (School of Electrical and Electronic Engineering, Universiti Sains Malaysia (USM), Nibong Tebal 14300, Penang, Malaysia)

Abstract

The demand response and battery energy storage system (BESS) will play a key role in the future of low carbon networks, coupled with new developments of battery technology driven mainly by the integration of renewable energy sources. However, studies that investigate the impacts of BESS and its demand response on the adequacy of a power supply are lacking. Thus, a need exists to address this important gap. Hence, this paper investigates the adequacy of a generating system that is highly integrated with wind power in meeting load demand. In adequacy studies, the impacts of demand response and battery energy storage system are considered. The demand response program is applied using the peak clipping and valley filling techniques at various percentages of the peak load. Three practical strategies of the BESS operation model are described in this paper, and all their impacts on the adequacy of the generating system are evaluated. The reliability impacts of various wind penetration levels on the generating system are also explored. Finally, different charging and discharging rates and capacities of the BESS are considered when evaluating their impacts on the adequacy of the generating system.

Suggested Citation

  • Jiashen Teh, 2018. "Adequacy Assessment of Wind Integrated Generating Systems Incorporating Demand Response and Battery Energy Storage System," Energies, MDPI, vol. 11(10), pages 1-12, October.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:10:p:2649-:d:173658
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/10/2649/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/10/2649/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Poullikkas, Andreas, 2013. "A comparative overview of large-scale battery systems for electricity storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 778-788.
    2. Hussein Jumma Jabir & Jiashen Teh & Dahaman Ishak & Hamza Abunima, 2018. "Impacts of Demand-Side Management on Electrical Power Systems: A Review," Energies, MDPI, vol. 11(5), pages 1-19, April.
    3. Hadjipaschalis, Ioannis & Poullikkas, Andreas & Efthimiou, Venizelos, 2009. "Overview of current and future energy storage technologies for electric power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1513-1522, August.
    4. Farihan Mohamad & Jiashen Teh, 2018. "Impacts of Energy Storage System on Power System Reliability: A Systematic Review," Energies, MDPI, vol. 11(7), pages 1-23, July.
    5. Good, Nicholas & Zhang, Lingxi & Navarro-Espinosa, Alejandro & Mancarella, Pierluigi, 2015. "High resolution modelling of multi-energy domestic demand profiles," Applied Energy, Elsevier, vol. 137(C), pages 193-210.
    6. Jiashen Teh & Chia Ai Ooi & Yu-Huei Cheng & Muhammad Ammirrul Atiqi Mohd Zainuri & Ching-Ming Lai, 2018. "Composite Reliability Evaluation of Load Demand Side Management and Dynamic Thermal Rating Systems," Energies, MDPI, vol. 11(2), pages 1-15, February.
    7. Farihan Mohamad & Jiashen Teh & Ching-Ming Lai & Liang-Rui Chen, 2018. "Development of Energy Storage Systems for Power Network Reliability: A Review," Energies, MDPI, vol. 11(9), pages 1-19, August.
    8. Hussein Jumma Jabir & Jiashen Teh & Dahaman Ishak & Hamza Abunima, 2018. "Impact of Demand-Side Management on the Reliability of Generation Systems," Energies, MDPI, vol. 11(8), pages 1-20, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Baxter Williams & Daniel Bishop & Patricio Gallardo & J. Geoffrey Chase, 2023. "Demand Side Management in Industrial, Commercial, and Residential Sectors: A Review of Constraints and Considerations," Energies, MDPI, vol. 16(13), pages 1-28, July.
    2. Pantelis A. Dratsas & Georgios N. Psarros & Stavros A. Papathanassiou, 2021. "Battery Energy Storage Contribution to System Adequacy," Energies, MDPI, vol. 14(16), pages 1-22, August.
    3. Shahrukh Khan & Arshad Mahmood & Mohammad Zaid & Mohd Tariq & Chang-Hua Lin & Javed Ahmad & Basem Alamri & Ahmad Alahmadi, 2021. "A High Step-up DC-DC Converter Based on the Voltage Lift Technique for Renewable Energy Applications," Sustainability, MDPI, vol. 13(19), pages 1-24, October.
    4. Megersa Tesfaye Boke & Semu Ayalew Moges & Zeleke Agide Dejen, 2022. "Optimizing renewable-based energy supply options for power generation in Ethiopia," PLOS ONE, Public Library of Science, vol. 17(1), pages 1-15, January.
    5. Mohamad, Farihan & Teh, Jiashen & Lai, Ching-Ming, 2021. "Optimum allocation of battery energy storage systems for power grid enhanced with solar energy," Energy, Elsevier, vol. 223(C).
    6. Fernando Manuel Carvalho da Silva Santos & Leonardo Elizeire Bremermann & Tadeu Da Mata Medeiros Branco & Diego Issicaba & Mauro Augusto da Rosa, 2018. "Impact Evaluation of Wind Power Geographic Dispersion on Future Operating Reserve Needs," Energies, MDPI, vol. 11(11), pages 1-13, October.
    7. Binh Do & Thai Tran & Ninh Nguyen, 2021. "Renewable Energy Integration in Vietnam’s Power System: Generation Adequacy Assessment and Strategic Implications," Energies, MDPI, vol. 14(12), pages 1-21, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohamad, Farihan & Teh, Jiashen & Lai, Ching-Ming, 2021. "Optimum allocation of battery energy storage systems for power grid enhanced with solar energy," Energy, Elsevier, vol. 223(C).
    2. Katsanevakis, Markos & Stewart, Rodney A. & Lu, Junwei, 2017. "Aggregated applications and benefits of energy storage systems with application-specific control methods: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 719-741.
    3. Pavlos Nikolaidis & Andreas Poullikkas, 2022. "A Thorough Emission-Cost Analysis of the Gradual Replacement of Carbon-Rich Fuels with Carbon-Free Energy Carriers in Modern Power Plants: The Case of Cyprus," Sustainability, MDPI, vol. 14(17), pages 1-18, August.
    4. Liu, Shuai & Wei, Li & Wang, Huai, 2020. "Review on reliability of supercapacitors in energy storage applications," Applied Energy, Elsevier, vol. 278(C).
    5. Nilton Bispo Amado & Erick Del Bianco Pelegia & Ildo Luís Sauer, 2021. "Capacity Value from Wind and Solar Sources in Systems with Variable Dispatchable Capacity—An Application in the Brazilian Hydrothermal System," Energies, MDPI, vol. 14(11), pages 1-26, May.
    6. Eunsung Oh, 2022. "Fair Virtual Energy Storage System Operation for Smart Energy Communities," Sustainability, MDPI, vol. 14(15), pages 1-16, August.
    7. Huaizhi Wang & Xian Zhang & Qing Li & Guibin Wang & Hui Jiang & Jianchun Peng, 2018. "Recursive Method for Distribution System Reliability Evaluation," Energies, MDPI, vol. 11(10), pages 1-15, October.
    8. Tolga Kara & Ahmet Duran Şahin, 2023. "Implications of Climate Change on Wind Energy Potential," Sustainability, MDPI, vol. 15(20), pages 1-26, October.
    9. Dehghani-Sanij, A.R. & Tharumalingam, E. & Dusseault, M.B. & Fraser, R., 2019. "Study of energy storage systems and environmental challenges of batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 192-208.
    10. Ren, Guorui & Liu, Jinfu & Wan, Jie & Guo, Yufeng & Yu, Daren, 2017. "Overview of wind power intermittency: Impacts, measurements, and mitigation solutions," Applied Energy, Elsevier, vol. 204(C), pages 47-65.
    11. Qaisar Abbas & Mojtaba Mirzaeian & Michael R.C. Hunt & Peter Hall & Rizwan Raza, 2020. "Current State and Future Prospects for Electrochemical Energy Storage and Conversion Systems," Energies, MDPI, vol. 13(21), pages 1-41, November.
    12. Clarke, Daniel P. & Al-Abdeli, Yasir M. & Kothapalli, Ganesh, 2015. "Multi-objective optimisation of renewable hybrid energy systems with desalination," Energy, Elsevier, vol. 88(C), pages 457-468.
    13. Sarrias-Mena, Raúl & Fernández-Ramírez, Luis M. & García-Vázquez, Carlos A. & Jurado, Francisco, 2014. "Improving grid integration of wind turbines by using secondary batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 194-207.
    14. Xiaotong Qie & Rui Zhang & Yanyong Hu & Xialing Sun & Xue Chen, 2021. "A Multi-Criteria Decision-Making Approach for Energy Storage Technology Selection Based on Demand," Energies, MDPI, vol. 14(20), pages 1-29, October.
    15. Argyrou, Maria C. & Christodoulides, Paul & Kalogirou, Soteris A., 2018. "Energy storage for electricity generation and related processes: Technologies appraisal and grid scale applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 804-821.
    16. Ussama Assad & Muhammad Arshad Shehzad Hassan & Umar Farooq & Asif Kabir & Muhammad Zeeshan Khan & S. Sabahat H. Bukhari & Zain ul Abidin Jaffri & Judit Oláh & József Popp, 2022. "Smart Grid, Demand Response and Optimization: A Critical Review of Computational Methods," Energies, MDPI, vol. 15(6), pages 1-36, March.
    17. Yuriy Leonidovich Zhukovskiy & Margarita Sergeevna Kovalchuk & Daria Evgenievna Batueva & Nikita Dmitrievich Senchilo, 2021. "Development of an Algorithm for Regulating the Load Schedule of Educational Institutions Based on the Forecast of Electric Consumption within the Framework of Application of the Demand Response," Sustainability, MDPI, vol. 13(24), pages 1-26, December.
    18. Mayank Singh & Rakesh Chandra Jha, 2019. "Object-Oriented Usability Indices for Multi-Objective Demand Side Management Using Teaching-Learning Based Optimization," Energies, MDPI, vol. 12(3), pages 1-25, January.
    19. Rajavelu Dharani & Madasamy Balasubramonian & Thanikanti Sudhakar Babu & Benedetto Nastasi, 2021. "Load Shifting and Peak Clipping for Reducing Energy Consumption in an Indian University Campus," Energies, MDPI, vol. 14(3), pages 1-16, January.
    20. Jarvinen, J. & Goldsworthy, M. & White, S. & Pudney, P. & Belusko, M. & Bruno, F., 2021. "Evaluating the utility of passive thermal storage as an energy storage system on the Australian energy market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:10:p:2649-:d:173658. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.