IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i10p2639-d173445.html
   My bibliography  Save this article

FPGA-Based Controller for a Permanent-Magnet Synchronous Motor Drive Based on a Four-Level Active-Clamped DC-AC Converter

Author

Listed:
  • Joan Nicolas-Apruzzese

    (Electronic Engineering Department, Universitat Politècnica de Catalunya, 08028 Barcelona, Spain)

  • Emili Lupon

    (Electronic Engineering Department, Universitat Politècnica de Catalunya, 08028 Barcelona, Spain)

  • Sergio Busquets-Monge

    (Electronic Engineering Department, Universitat Politècnica de Catalunya, 08028 Barcelona, Spain)

  • Alfonso Conesa

    (Electronic Engineering Department, Universitat Politècnica de Catalunya, 08028 Barcelona, Spain)

  • Josep Bordonau

    (Electronic Engineering Department, Universitat Politècnica de Catalunya, 08028 Barcelona, Spain)

  • Gabriel García-Rojas

    (Electronic Engineering Department, Universitat Politècnica de Catalunya, 08028 Barcelona, Spain)

Abstract

This paper proposes a closed-loop control implementation fully-embedded into an FPGA for a permanent-magnet synchronous motor (PMSM) drive based on a four-level active-clamped converter. The proposed FPGA controller comprises a field-oriented control to drive the PMSM, a DC-link voltage balancing closed-loop control (VBC), and a virtual-vector-based modulator for a four-level active-clamped converter. The VBC and the modulator operate in consonance to preserve the DC-link capacitor voltages balanced. The FPGA design methodology is carefully described and the main aspects to achieve an optimal FPGA implementation using low resources are discussed. Experimental results under different operating conditions are presented to demonstrate the good performance and the feasibility of the proposed controller for motor-drive applications.

Suggested Citation

  • Joan Nicolas-Apruzzese & Emili Lupon & Sergio Busquets-Monge & Alfonso Conesa & Josep Bordonau & Gabriel García-Rojas, 2018. "FPGA-Based Controller for a Permanent-Magnet Synchronous Motor Drive Based on a Four-Level Active-Clamped DC-AC Converter," Energies, MDPI, vol. 11(10), pages 1-17, October.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:10:p:2639-:d:173445
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/10/2639/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/10/2639/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Miguel Moranchel & Francisco Huerta & Inés Sanz & Emilio Bueno & Francisco J. Rodríguez, 2016. "A Comparison of Modulation Techniques for Modular Multilevel Converters," Energies, MDPI, vol. 9(12), pages 1-20, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xizheng Guo & Jiaqi Yuan & Yiguo Tang & Xiaojie You, 2018. "Hardware in the Loop Real-time Simulation for the Associated Discrete Circuit Modeling Optimization Method of Power Converters," Energies, MDPI, vol. 11(11), pages 1-14, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fernando Martinez-Rodrigo & Dionisio Ramirez & Alexis B. Rey-Boue & Santiago De Pablo & Luis Carlos Herrero-de Lucas, 2017. "Modular Multilevel Converters: Control and Applications," Energies, MDPI, vol. 10(11), pages 1-26, October.
    2. Qinyue Zhu & Wei Dai & Lei Guan & Xitang Tan & Zhaoyang Li & Dabo Xie, 2019. "A Fault-Tolerant Control Strategy of Modular Multilevel Converter with Sub-Module Faults Based on Neutral Point Compound Shift," Energies, MDPI, vol. 12(5), pages 1-22, March.
    3. Xiongmin Tang & Chengjing Lai & Zheng Liu & Miao Zhang, 2017. "A SVPWM to Eliminate Common-Mode Voltage for Multilevel Inverters," Energies, MDPI, vol. 10(5), pages 1-10, May.
    4. Xu Tian & Yue Ma & Jintao Yu & Cong Wang & Hong Cheng, 2019. "A Modified One-Cycle-Control Method for Modular Multilevel Converters," Energies, MDPI, vol. 12(1), pages 1-17, January.
    5. Qiwu Luo & Jian Zheng & Yichuang Sun & Lijun Yang, 2018. "Optimal Modeled Six-Phase Space Vector Pulse Width Modulation Method for Stator Voltage Harmonic Suppression," Energies, MDPI, vol. 11(10), pages 1-16, September.
    6. Murthy Priya & Pathipooranam Ponnambalam, 2022. "Circulating Current Control of Phase-Shifted Carrier-Based Modular Multilevel Converter Fed by Fuel Cell Employing Fuzzy Logic Control Technique," Energies, MDPI, vol. 15(16), pages 1-26, August.
    7. Xu Tian & Xingcheng Li & Zibo Zhou, 2020. "Novel Uninterruptible Phase-Separation Passing and Power Quality Compensation Scheme Based on Modular Multilevel Converter for Double-Track Electrified Railway," Energies, MDPI, vol. 13(3), pages 1-17, February.
    8. Yumeng Tian & Harith R. Wickramasinghe & Zixin Li & Josep Pou & Georgios Konstantinou, 2022. "Review, Classification and Loss Comparison of Modular Multilevel Converter Submodules for HVDC Applications," Energies, MDPI, vol. 15(6), pages 1-32, March.
    9. Xiongmin Tang & Junhui Zhang & Zheng Liu & Miao Zhang, 2017. "A Switching Frequency Optimized Space Vector Pulse Width Modulation (SVPWM) Scheme for Cascaded Multilevel Inverters," Energies, MDPI, vol. 10(5), pages 1-18, May.
    10. Zaid A. Aljawary & Santiago de Pablo & Luis Carlos Herrero-de Lucas & Fernando Martinez-Rodrigo, 2020. "Local Carrier PWM for Modular Multilevel Converters with Distributed PV Cells and Circulating Current Reduction," Energies, MDPI, vol. 13(21), pages 1-21, October.
    11. Guido Ala & Massimo Caruso & Rosario Miceli & Filippo Pellitteri & Giuseppe Schettino & Marco Trapanese & Fabio Viola, 2019. "Experimental Investigation on the Performances of a Multilevel Inverter Using a Field Programmable Gate Array-Based Control System," Energies, MDPI, vol. 12(6), pages 1-17, March.
    12. Umashankar Subramaniam & Sagar Mahajan Bhaskar & Dhafer J.Almakhles & Sanjeevikumar Padmanaban & Zbigniew Leonowicz, 2019. "Investigations on EMI Mitigation Techniques: Intent to Reduce Grid-Tied PV Inverter Common Mode Current and Voltage," Energies, MDPI, vol. 12(17), pages 1-18, September.
    13. José Gabriel Oliveira Pinto & Rui Macedo & Vitor Monteiro & Luis Barros & Tiago Sousa & João L. Afonso, 2018. "Single-Phase Shunt Active Power Filter Based on a 5-Level Converter Topology," Energies, MDPI, vol. 11(4), pages 1-26, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:10:p:2639-:d:173445. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.