IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i9p1288-d110225.html
   My bibliography  Save this article

Optimal Energy Management for Microgrids with Combined Heat and Power (CHP) Generation, Energy Storages, and Renewable Energy Sources

Author

Listed:
  • Guanglin Zhang

    (College of Information Science and Technology, Engineering Research Center of Digitized Textile and Fashion Technology, Ministry of Education, Donghua University, Shanghai 201620, China)

  • Yu Cao

    (College of Information Science and Technology, Engineering Research Center of Digitized Textile and Fashion Technology, Ministry of Education, Donghua University, Shanghai 201620, China)

  • Yongsheng Cao

    (College of Information Science and Technology, Engineering Research Center of Digitized Textile and Fashion Technology, Ministry of Education, Donghua University, Shanghai 201620, China)

  • Demin Li

    (College of Information Science and Technology, Engineering Research Center of Digitized Textile and Fashion Technology, Ministry of Education, Donghua University, Shanghai 201620, China)

  • Lin Wang

    (Department of Automation, Shanghai Jiaotong University, Shanghai 200240, China)

Abstract

This paper studies an energy management problem for a typical grid-connected microgrid system that consists of renewable energy sources, Combined Heat and Power (CHP) co-generation, and energy storages to satisfy electricity and heat demand simultaneously. We formulate this problem into a stochastic non-convex optimization programming to achieve the minimum microgrid’s operating cost, which is difficult to solve due to its non-convexity and coupling feature of constraints. Existing approaches such as dynamic programming (DP) assume that all the system dynamics are known, which results in a high computational complexity and thus are not feasible in practice. The focus of this paper is on the design of a real-time energy management strategy for the optimal operation of microgrids with low computational complexity. Specifically, derived from a modified Lyapunov optimization technique, an online algorithm with random inputs (e.g., the charging/discharging of energy storage devices, power from the CHP system, the electricity from external power grid, and the renewables generation, etc.), which requires no statistic system information, is proposed. We provide an implementation of the proposed energy management algorithm and prove its optimality theoretically. Based on real-world data traces, extensive empirical evaluations are presented to verify the performance of our algorithm.

Suggested Citation

  • Guanglin Zhang & Yu Cao & Yongsheng Cao & Demin Li & Lin Wang, 2017. "Optimal Energy Management for Microgrids with Combined Heat and Power (CHP) Generation, Energy Storages, and Renewable Energy Sources," Energies, MDPI, vol. 10(9), pages 1-18, August.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:9:p:1288-:d:110225
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/9/1288/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/9/1288/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Editorial Article, 0. "The Information for Authors," Economics of Contemporary Russia, Regional Public Organization for Assistance to the Development of Institutions of the Department of Economics of the Russian Academy of Sciences, issue 4.
    2. Editorial Article, 0. "The Information for Authors," Economics of Contemporary Russia, Regional Public Organization for Assistance to the Development of Institutions of the Department of Economics of the Russian Academy of Sciences, issue 3.
    3. Editorial Article, 0. "The Information for Authors," Economics of Contemporary Russia, Regional Public Organization for Assistance to the Development of Institutions of the Department of Economics of the Russian Academy of Sciences, issue 2.
    4. Editorial Article, 0. "The Information for Authors," Economics of Contemporary Russia, Regional Public Organization for Assistance to the Development of Institutions of the Department of Economics of the Russian Academy of Sciences, issue 2.
    5. Li, Jianwei & Yang, Qingqing & Robinson, Francis. & Liang, Fei & Zhang, Min & Yuan, Weijia, 2017. "Design and test of a new droop control algorithm for a SMES/battery hybrid energy storage system," Energy, Elsevier, vol. 118(C), pages 1110-1122.
    6. Li, Jianwei & Xiong, Rui & Yang, Qingqing & Liang, Fei & Zhang, Min & Yuan, Weijia, 2017. "Design/test of a hybrid energy storage system for primary frequency control using a dynamic droop method in an isolated microgrid power system," Applied Energy, Elsevier, vol. 201(C), pages 257-269.
    7. Editorial Article, 0. "The Information for Authors," Economics of Contemporary Russia, Regional Public Organization for Assistance to the Development of Institutions of the Department of Economics of the Russian Academy of Sciences, issue 4.
    8. Li, Jianwei & Wang, Xudong & Zhang, Zhenyu & Le Blond, Simon & Yang, Qingqing & Zhang, Min & Yuan, Weijia, 2017. "Analysis of a new design of the hybrid energy storage system used in the residential m-CHP systems," Applied Energy, Elsevier, vol. 187(C), pages 169-179.
    9. Editorial Article, 0. "The Information for Authors," Economics of Contemporary Russia, Regional Public Organization for Assistance to the Development of Institutions of the Department of Economics of the Russian Academy of Sciences, issue 3.
    10. Editorial Article, 0. "The Information for Authors," Economics of Contemporary Russia, Regional Public Organization for Assistance to the Development of Institutions of the Department of Economics of the Russian Academy of Sciences, issue 1.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tammo Zobel & Andreas Ritter & Christopher H. Onder, 2023. "The Faster the Better? Optimal Warm-Up Strategies for a Micro Combined Heat and Power Plant," Energies, MDPI, vol. 16(10), pages 1-24, May.
    2. Heng Chen & Jidong Xu & Yao Xiao & Zhen Qi & Gang Xu & Yongping Yang, 2018. "An Improved Heating System with Waste Pressure Utilization in a Combined Heat and Power Unit," Energies, MDPI, vol. 11(6), pages 1-20, June.
    3. Pedro Faria, 2019. "Distributed Energy Resources Management," Energies, MDPI, vol. 12(3), pages 1-3, February.
    4. Eid Gul & Giorgio Baldinelli & Pietro Bartocci, 2022. "Energy Transition: Renewable Energy-Based Combined Heat and Power Optimization Model for Distributed Communities," Energies, MDPI, vol. 15(18), pages 1-18, September.
    5. Luca Urbanucci & Francesco D’Ettorre & Daniele Testi, 2019. "A Comprehensive Methodology for the Integrated Optimal Sizing and Operation of Cogeneration Systems with Thermal Energy Storage," Energies, MDPI, vol. 12(5), pages 1-17, March.
    6. Marco Pellegrini & Augusto Bianchini, 2018. "The Innovative Concept of Cold District Heating Networks: A Literature Review," Energies, MDPI, vol. 11(1), pages 1-16, January.
    7. Omid Sadeghian & Arash Moradzadeh & Behnam Mohammadi-Ivatloo & Mehdi Abapour & Fausto Pedro Garcia Marquez, 2020. "Generation Units Maintenance in Combined Heat and Power Integrated Systems Using the Mixed Integer Quadratic Programming Approach," Energies, MDPI, vol. 13(11), pages 1-25, June.
    8. Asad Waqar & Muhammad Shahbaz Tanveer & Jehanzeb Ahmad & Muhammad Aamir & Muneeb Yaqoob & Fareeha Anwar, 2017. "Multi-Objective Analysis of a CHP Plant Integrated Microgrid in Pakistan," Energies, MDPI, vol. 10(10), pages 1-22, October.
    9. Pavel Atănăsoae, 2022. "Allocation of Joint Costs and Price Setting for Electricity and Heat Generated in Cogeneration," Energies, MDPI, vol. 16(1), pages 1-20, December.
    10. Li, Jianwei & Xiong, Rui & Mu, Hao & Cornélusse, Bertrand & Vanderbemden, Philippe & Ernst, Damien & Yuan, Weijia, 2018. "Design and real-time test of a hybrid energy storage system in the microgrid with the benefit of improving the battery lifetime," Applied Energy, Elsevier, vol. 218(C), pages 470-478.
    11. Xiaofeng Dong & Xiaoshun Zhang & Tong Jiang, 2018. "Adaptive Consensus Algorithm for Distributed Heat-Electricity Energy Management of an Islanded Microgrid," Energies, MDPI, vol. 11(9), pages 1-17, August.
    12. Bio Gassi, Karim & Baysal, Mustafa, 2023. "Improving real-time energy decision-making model with an actor-critic agent in modern microgrids with energy storage devices," Energy, Elsevier, vol. 263(PE).
    13. Xiong, Heng & Mamon, Rogemar, 2019. "A higher-order Markov chain-modulated model for electricity spot-price dynamics," Applied Energy, Elsevier, vol. 233, pages 495-515.
    14. Yaokui Gao & Yong Hu & Deliang Zeng & Jizhen Liu & Feng Chen, 2018. "Modeling and Control of a Combined Heat and Power Unit with Two-Stage Bypass," Energies, MDPI, vol. 11(6), pages 1-20, May.
    15. Álex Omar Topa Gavilema & José Domingo Álvarez & José Luis Torres Moreno & Manuel Pérez García, 2021. "Towards Optimal Management in Microgrids: An Overview," Energies, MDPI, vol. 14(16), pages 1-25, August.
    16. José Rafael Lopes & Salvador Ávila & Ricardo Kalid & Jorge Laureano Moya Rodríguez, 2018. "Energy Efficiency Improvement in Non-Intensive Energy Enterprises: A Framework Proposal," Energies, MDPI, vol. 11(5), pages 1-16, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kritana Prueksakorn & Cheng-Xu Piao & Hyunchul Ha & Taehyeung Kim, 2015. "Computational and Experimental Investigation for an Optimal Design of Industrial Windows to Allow Natural Ventilation during Wind-Driven Rain," Sustainability, MDPI, vol. 7(8), pages 1-22, August.
    2. Hualin Xie & Jinlang Zou & Hailing Jiang & Ning Zhang & Yongrok Choi, 2014. "Spatiotemporal Pattern and Driving Forces of Arable Land-Use Intensity in China: Toward Sustainable Land Management Using Emergy Analysis," Sustainability, MDPI, vol. 6(6), pages 1-17, May.
    3. Stephan E. Maurer & Andrei V. Potlogea, 2021. "Male‐biased Demand Shocks and Women's Labour Force Participation: Evidence from Large Oil Field Discoveries," Economica, London School of Economics and Political Science, vol. 88(349), pages 167-188, January.
    4. Tie Hua Zhou & Ling Wang & Keun Ho Ryu, 2015. "Supporting Keyword Search for Image Retrieval with Integration of Probabilistic Annotation," Sustainability, MDPI, vol. 7(5), pages 1-18, May.
    5. T. Karski, 2019. "Opinions and Controversies in Problem of The So-Called Idiopathic Scoliosis. Information About Etiology, New Classification and New Therapy," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 12(5), pages 9612-9616, January.
    6. Sung-Won Park & Sung-Yong Son, 2017. "Cost Analysis for a Hybrid Advanced Metering Infrastructure in Korea," Energies, MDPI, vol. 10(9), pages 1-18, September.
    7. Wesley Mendes-da-Silva, 2020. "What Makes an Article be More Cited?," RAC - Revista de Administração Contemporânea (Journal of Contemporary Administration), ANPAD - Associação Nacional de Pós-Graduação e Pesquisa em Administração, vol. 24(6), pages 507-513.
    8. Martin Valtierra-Rodriguez & Juan Pablo Amezquita-Sanchez & Arturo Garcia-Perez & David Camarena-Martinez, 2019. "Complete Ensemble Empirical Mode Decomposition on FPGA for Condition Monitoring of Broken Bars in Induction Motors," Mathematics, MDPI, vol. 7(9), pages 1-19, August.
    9. Akca Yasar & Gokhan Ozer, 2016. "Determination the Factors that Affect the Use of Enterprise Resource Planning Information System through Technology Acceptance Model," International Journal of Business and Management, Canadian Center of Science and Education, vol. 11(10), pages 1-91, September.
    10. Julián Miranda & Angélica Flórez & Gustavo Ospina & Ciro Gamboa & Carlos Flórez & Miguel Altuve, 2020. "Proposal for a System Model for Offline Seismic Event Detection in Colombia," Future Internet, MDPI, vol. 12(12), pages 1-17, December.
    11. Wisdom Akpalu & Mintewab Bezabih, 2015. "Tenure Insecurity, Climate Variability and Renting out Decisions among Female Small-Holder Farmers in Ethiopia," Sustainability, MDPI, vol. 7(6), pages 1-16, June.
    12. Wei Chen & Shu-Yu Liu & Chih-Han Chen & Yi-Shan Lee, 2011. "Bounded Memory, Inertia, Sampling and Weighting Model for Market Entry Games," Games, MDPI, vol. 2(1), pages 1-13, March.
    13. David Harborth & Sebastian Pape, 2020. "Empirically Investigating Extraneous Influences on the “APCO” Model—Childhood Brand Nostalgia and the Positivity Bias," Future Internet, MDPI, vol. 12(12), pages 1-16, December.
    14. Ping Wang & Jie Wang & Guiwu Wei & Cun Wei, 2019. "Similarity Measures of q-Rung Orthopair Fuzzy Sets Based on Cosine Function and Their Applications," Mathematics, MDPI, vol. 7(4), pages 1-23, April.
    15. Peterson, Willis L., 1973. "Publication Productivities Of U.S. Economics Department Graduates," Staff Papers 14105, University of Minnesota, Department of Applied Economics.
    16. Taeyeoun Roh & Yujin Jeong & Byungun Yoon, 2017. "Developing a Methodology of Structuring and Layering Technological Information in Patent Documents through Natural Language Processing," Sustainability, MDPI, vol. 9(11), pages 1-19, November.
    17. He-Yau Kang & Amy H. I. Lee & Tzu-Ting Huang, 2016. "Project Management for a Wind Turbine Construction by Applying Fuzzy Multiple Objective Linear Programming Models," Energies, MDPI, vol. 9(12), pages 1-15, December.
    18. Vasilyeva, Olga, 2021. "Agro-food clusters in the Republic of Kazakhstan: assessment and prospects of development," Economic Consultant, Roman I. Ostapenko, vol. 34(2), pages 13-20.
    19. Chris Lytridis & Anna Lekova & Christos Bazinas & Michail Manios & Vassilis G. Kaburlasos, 2020. "WINkNN: Windowed Intervals’ Number kNN Classifier for Efficient Time-Series Applications," Mathematics, MDPI, vol. 8(3), pages 1-14, March.
    20. Richard J. Ciotola & Jay F. Martin & Juan M. Castańo & Jiyoung Lee & Frederick Michel, 2013. "Microbial Community Response to Seasonal Temperature Variation in a Small-Scale Anaerobic Digester," Energies, MDPI, vol. 6(10), pages 1-18, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:9:p:1288-:d:110225. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.