IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i8p1225-d108697.html
   My bibliography  Save this article

Hydrogen Storage Capacity of Tetrahydrofuran and Tetra- N -Butylammonium Bromide Hydrates Under Favorable Thermodynamic Conditions

Author

Listed:
  • Joshua T. Weissman

    (Hawaiian Electric Company, Honolulu, HI 96814, USA)

  • Stephen M. Masutani

    (Hawaii Natural Energy Institute, University of Hawaii, Honolulu, HI 96822, USA)

Abstract

An experimental study was conducted to evaluate the feasibility of employing binary hydrates as a medium for H 2 storage. Two reagents, tetrahydrofuran (THF) and tetra- n -butylammonium bromide (TBAB), which had been reported previously to have potential to form binary hydrates with H 2 under favorable conditions (i.e., low pressures and high temperatures), were investigated using differential scanning calorimetry and Raman spectroscopy. A scale-up facility was employed to quantify the hydrogen storage capacity of THF binary hydrate. Gas chromatography (GC) and pressure drop analyses indicated that the weight percentages of H 2 in hydrate were less than 0.1%. The major conclusions of this investigation were: (1) H 2 can be stored in binary hydrates at relatively modest pressures and temperatures which are probably feasible for transportation applications; and (2) the storage capacity of H 2 in binary hydrate formed from aqueous solutions of THF over a concentration range extending from 2.78 to 8.34 mol % and at temperatures above 263 K and pressures below 11 MPa was <0.1 wt %.

Suggested Citation

  • Joshua T. Weissman & Stephen M. Masutani, 2017. "Hydrogen Storage Capacity of Tetrahydrofuran and Tetra- N -Butylammonium Bromide Hydrates Under Favorable Thermodynamic Conditions," Energies, MDPI, vol. 10(8), pages 1-20, August.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:8:p:1225-:d:108697
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/8/1225/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/8/1225/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Veluswamy, Hari Prakash & Kumar, Rajnish & Linga, Praveen, 2014. "Hydrogen storage in clathrate hydrates: Current state of the art and future directions," Applied Energy, Elsevier, vol. 122(C), pages 112-132.
    2. Huen Lee & Jong-won Lee & Do Youn Kim & Jeasung Park & Yu-Taek Seo & Huang Zeng & Igor L. Moudrakovski & Christopher I. Ratcliffe & John A. Ripmeester, 2005. "Tuning clathrate hydrates for hydrogen storage," Nature, Nature, vol. 434(7034), pages 743-746, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hongsheng Dong & Lunxiang Zhang & Jiaqi Wang, 2022. "Formation, Exploration, and Development of Natural Gas Hydrates," Energies, MDPI, vol. 15(16), pages 1-4, August.
    2. Lee, Wonhyeong & Kang, Dong Woo & Ahn, Yun-Ho & Lee, Jae W., 2023. "Blended hydrate seed and liquid promoter for the acceleration of hydrogen hydrate formation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 177(C).
    3. Lee, Wonhyeong & Kim, Min-Kyung & Moon, Seokyoon & Lee, Jae W. & Ahn, Yun-Ho, 2025. "Rapid hydrogen enclathration and unprecedented tuning phenomenon within superabsorbent polymers," Applied Energy, Elsevier, vol. 377(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Siyuan & Wang, Yanhong & Lang, Xuemei & Fan, Shuanshi & Li, Gang, 2023. "Rapid and high hydrogen storage in epoxycyclopentane hydrate at moderate pressure," Energy, Elsevier, vol. 268(C).
    2. Xie, Yan & Zhu, Yu-Jie & Cheng, Li-Wei & Zheng, Tao & Zhong, Jin-Rong & Xiao, Peng & Sun, Chang-Yu & Chen, Guang-Jin & Feng, Jing-Chun, 2023. "The coexistence of multiple hydrates triggered by varied H2 molecule occupancy during CO2/H2 hydrate dissociation," Energy, Elsevier, vol. 262(PA).
    3. Veluswamy, Hari Prakash & Kumar, Asheesh & Kumar, Rajnish & Linga, Praveen, 2017. "An innovative approach to enhance methane hydrate formation kinetics with leucine for energy storage application," Applied Energy, Elsevier, vol. 188(C), pages 190-199.
    4. Kong, Yaning & Yu, Honglin & Liu, Mengqi & Zhang, Guodong & Wang, Fei, 2024. "Ultra-rapid formation of mixed H2/DIOX/THF hydrate under low driving force: Important insight for hydrate-based hydrogen storage," Applied Energy, Elsevier, vol. 362(C).
    5. Zhang, Jibao & Li, Yan & Rao, Yizhi & Li, Yang & He, Tianbiao & Linga, Praveen & Wang, Xiaolin & Chen, Qian & Yin, Zhenyuan, 2024. "Probing the pathway of H2-THF and H2-DIOX sII hydrates formation: Implication on hydrate-based H2 storage," Applied Energy, Elsevier, vol. 376(PB).
    6. Tinku Saikia & Shirish Patil & Abdullah Sultan, 2023. "Hydrogen Hydrate Promoters for Gas Storage—A Review," Energies, MDPI, vol. 16(6), pages 1-17, March.
    7. Qureshi, Fazil & Yusuf, Mohammad & Ahmed, Salman & Haq, Moinul & Alraih, Alhafez M. & Hidouri, Tarek & Kamyab, Hesam & Vo, Dai-Viet N. & Ibrahim, Hussameldin, 2024. "Advancements in sorption-based materials for hydrogen storage and utilization: A comprehensive review," Energy, Elsevier, vol. 309(C).
    8. Babu, Ponnivalavan & Linga, Praveen & Kumar, Rajnish & Englezos, Peter, 2015. "A review of the hydrate based gas separation (HBGS) process for carbon dioxide pre-combustion capture," Energy, Elsevier, vol. 85(C), pages 261-279.
    9. Han Xue & Linhai Li & Yiqun Wang & Youhua Lu & Kai Cui & Zhiyuan He & Guoying Bai & Jie Liu & Xin Zhou & Jianjun Wang, 2024. "Probing the critical nucleus size in tetrahydrofuran clathrate hydrate formation using surface-anchored nanoparticles," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    10. Veluswamy, Hari Prakash & Kumar, Asheesh & Premasinghe, Kulesha & Linga, Praveen, 2017. "Effect of guest gas on the mixed tetrahydrofuran hydrate kinetics in a quiescent system," Applied Energy, Elsevier, vol. 207(C), pages 573-583.
    11. Bai, Xiao-Shuai & Yang, Wei-Wei & Tang, Xin-Yuan & Yang, Fu-Sheng & Jiao, Yu-Hang & Yang, Yu, 2021. "Optimization of tree-shaped fin structures towards enhanced absorption performance of metal hydride hydrogen storage device: A numerical study," Energy, Elsevier, vol. 220(C).
    12. Fang, Bin & Lü, Tao & Li, Wei & Moultos, Othonas A. & Vlugt, Thijs J.H. & Ning, Fulong, 2024. "Microscopic insights into poly- and mono-crystalline methane hydrate dissociation in Na-montmorillonite pores at static and dynamic fluid conditions," Energy, Elsevier, vol. 288(C).
    13. Fangtian Wang & Bin Zhao & Gang Li, 2018. "Prevention of Potential Hazards Associated with Marine Gas Hydrate Exploitation: A Review," Energies, MDPI, vol. 11(9), pages 1-19, September.
    14. Gambelli, Alberto Maria & Rossi, Federico, 2019. "Natural gas hydrates: Comparison between two different applications of thermal stimulation for performing CO2 replacement," Energy, Elsevier, vol. 172(C), pages 423-434.
    15. Wang, Yi & Feng, Jing-Chun & Li, Xiao-Sen & Zhang, Yu, 2017. "Experimental investigation of optimization of well spacing for gas recovery from methane hydrate reservoir in sandy sediment by heat stimulation," Applied Energy, Elsevier, vol. 207(C), pages 562-572.
    16. Veluswamy, Hari Prakash & Kumar, Rajnish & Linga, Praveen, 2014. "Hydrogen storage in clathrate hydrates: Current state of the art and future directions," Applied Energy, Elsevier, vol. 122(C), pages 112-132.
    17. Gautam, Rupali & Kumar, Sanat & Upadhyayula, Sreedevi, 2024. "A comprehensive review on recent breakthroughs in hydrogen production from hydrogen sulfide decomposition: Harnessing the power of plasma," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    18. Moon, Seokyoon & Lee, Yunseok & Seo, Dongju & Lee, Seungin & Hong, Sujin & Ahn, Yun-Ho & Park, Youngjune, 2021. "Critical hydrogen concentration of hydrogen-natural gas blends in clathrate hydrates for blue hydrogen storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    19. Sreedhar, I. & Kamani, Krutarth M. & Kamani, Bansi M. & Reddy, Benjaram M. & Venugopal, A., 2018. "A Bird's Eye view on process and engineering aspects of hydrogen storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 838-860.
    20. Yi Wang & Jing-Chun Feng & Xiao-Sen Li & Yu Zhang & Gang Li, 2016. "Evaluation of Gas Production from Marine Hydrate Deposits at the GMGS2-Site 8, Pearl River Mouth Basin, South China Sea," Energies, MDPI, vol. 9(3), pages 1-22, March.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:8:p:1225-:d:108697. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.