IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i8p1080-d105909.html
   My bibliography  Save this article

An Improved Droop Control Strategy Based on Changeable Reference in Low-Voltage Microgrids

Author

Listed:
  • Chunxia Dou

    (Institute of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China
    Institute of Advanced Technology, Nanjing University of Posts and Telecommunications, Nanjing 210023, China)

  • Zhanqiang Zhang

    (Institute of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China)

  • Dong Yue

    (Institute of Advanced Technology, Nanjing University of Posts and Telecommunications, Nanjing 210023, China)

  • Hanxiao Gao

    (Institute of Marxism, Yanshan University, Qinhuangdao 066004, China)

Abstract

This paper proposes an improved droop control strategy based on changeable reference in low-voltage microgrids. To restore running frequency of distributed generation to a rated value without affecting its reactive power output, changeable frequency reference, mainly compensating for frequency deviation, are proposed corresponding to various load demands. In terms of active power sharing inaccuracy associated with mismatched line impedance, changeable voltage amplitude reference is proposed to obtain a droop line suitable for the actual voltage of distributed generations. By further improvement of the active droop coefficient, power sharing is accurate with a difference in actual voltages of distributed generations. Virtual negative inductance is used to neutralize the redundant line inductance for strictly improving sharing accuracy. A robust control method based on Lyapunov function is used to handle the robustness problem in case of load variation. The control scheme is entirely decentralized, so communication links among distributed generations are redundant. Finally, simulation studies demonstrate the effectiveness of a control strategy.

Suggested Citation

  • Chunxia Dou & Zhanqiang Zhang & Dong Yue & Hanxiao Gao, 2017. "An Improved Droop Control Strategy Based on Changeable Reference in Low-Voltage Microgrids," Energies, MDPI, vol. 10(8), pages 1-18, July.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:8:p:1080-:d:105909
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/8/1080/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/8/1080/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kyriakarakos, George & Dounis, Anastasios I. & Rozakis, Stelios & Arvanitis, Konstantinos G. & Papadakis, George, 2011. "Polygeneration microgrids: A viable solution in remote areas for supplying power, potable water and hydrogen as transportation fuel," Applied Energy, Elsevier, vol. 88(12), pages 4517-4526.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bum-Jun Kim & Ho-Jung Kum & Jung-Min Park & Chung-Yuen Won, 2018. "Analysis, Design and Implementation of Droop-Controlled Parallel-Inverters Using Dynamic Phasor Model and SOGI-FLL in Microgrid Applications," Energies, MDPI, vol. 11(7), pages 1-19, June.
    2. Yalong Hu & Wei Wei, 2018. "Improved Droop Control with Washout Filter," Energies, MDPI, vol. 11(9), pages 1-18, September.
    3. Qiuxia Yang & Dongmei Yuan & Xiaoqiang Guo & Bo Zhang & Cheng Zhi, 2018. "A Novel Hierarchical Control Strategy for Low-Voltage Islanded Microgrids Based on the Concept of Cyber Physical System," Energies, MDPI, vol. 11(7), pages 1-24, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yi, Ji Hyun & Ko, Woong & Park, Jong-Keun & Park, Hyeongon, 2018. "Impact of carbon emission constraint on design of small scale multi-energy system," Energy, Elsevier, vol. 161(C), pages 792-808.
    2. Villa-Arrieta, Manuel & Sumper, Andreas, 2018. "A model for an economic evaluation of energy systems using TRNSYS," Applied Energy, Elsevier, vol. 215(C), pages 765-777.
    3. Papapostolou, Christiana M. & Kondili, Emilia M. & Zafirakis, Dimitris P. & Tzanes, Georgios T., 2020. "Sustainable water supply systems for the islands: The integration with the energy problem," Renewable Energy, Elsevier, vol. 146(C), pages 2577-2588.
    4. Calise, Francesco & Cipollina, Andrea & Dentice d’Accadia, Massimo & Piacentino, Antonio, 2014. "A novel renewable polygeneration system for a small Mediterranean volcanic island for the combined production of energy and water: Dynamic simulation and economic assessment," Applied Energy, Elsevier, vol. 135(C), pages 675-693.
    5. Kasivisvanathan, Harresh & Barilea, Ivan Dale U. & Ng, Denny K.S. & Tan, Raymond R., 2013. "Optimal operational adjustment in multi-functional energy systems in response to process inoperability," Applied Energy, Elsevier, vol. 102(C), pages 492-500.
    6. El-Sharafy, M. Zaki & Farag, Hany E.Z., 2017. "Back-feed power restoration using distributed constraint optimization in smart distribution grids clustered into microgrids," Applied Energy, Elsevier, vol. 206(C), pages 1102-1117.
    7. Kim, Sung Han & Miesse, Craig M. & Lee, Hee Bum & Chang, Ik Whang & Hwang, Yong Sheen & Jang, Jae Hyuk & Cha, Suk Won, 2014. "Ultra compact direct hydrogen fuel cell prototype using a metal hydride hydrogen storage tank for a mobile phone," Applied Energy, Elsevier, vol. 134(C), pages 382-391.
    8. Li, Bo & Li, Xu & Su, Qingyu, 2022. "A system and game strategy for the isolated island electric-gas deeply coupled energy network," Applied Energy, Elsevier, vol. 306(PA).
    9. Förster, Robert & Kaiser, Matthias & Wenninger, Simon, 2023. "Future vehicle energy supply - sustainable design and operation of hybrid hydrogen and electric microgrids," Applied Energy, Elsevier, vol. 334(C).
    10. Jana, Kuntal & De, Sudipta, 2015. "Polygeneration using agricultural waste: Thermodynamic and economic feasibility study," Renewable Energy, Elsevier, vol. 74(C), pages 648-660.
    11. Meschede, Henning & Dunkelberg, Heiko & Stöhr, Fabian & Peesel, Ron-Hendrik & Hesselbach, Jens, 2017. "Assessment of probabilistic distributed factors influencing renewable energy supply for hotels using Monte-Carlo methods," Energy, Elsevier, vol. 128(C), pages 86-100.
    12. Kyriakarakos, George & Dounis, Anastasios I. & Arvanitis, Konstantinos G. & Papadakis, George, 2012. "A fuzzy logic energy management system for polygeneration microgrids," Renewable Energy, Elsevier, vol. 41(C), pages 315-327.
    13. Detroja, Ketan P., 2016. "Optimal autonomous microgrid operation: A holistic view," Applied Energy, Elsevier, vol. 173(C), pages 320-330.
    14. Zhao, Bo & Zhang, Xuesong & Li, Peng & Wang, Ke & Xue, Meidong & Wang, Caisheng, 2014. "Optimal sizing, operating strategy and operational experience of a stand-alone microgrid on Dongfushan Island," Applied Energy, Elsevier, vol. 113(C), pages 1656-1666.
    15. Hirwa, Jusse & Zolan, Alexander & Becker, William & Flamand, Tülay & Newman, Alexandra, 2023. "Optimizing design and dispatch of a resilient renewable energy microgrid for a South African hospital," Applied Energy, Elsevier, vol. 348(C).
    16. Ghaffarpour, Reza & Mozafari, Babak & Ranjbar, Ali Mohammad & Torabi, Taghi, 2018. "Resilience oriented water and energy hub scheduling considering maintenance constraint," Energy, Elsevier, vol. 158(C), pages 1092-1104.
    17. Woo-Kyu Chae & Jong-Nam Won & Hak-Ju Lee & Jae-Eon Kim & Jaehong Kim, 2016. "Comparative Analysis of Voltage Control in Battery Power Converters for Inverter-Based AC Microgrids," Energies, MDPI, vol. 9(8), pages 1-18, July.
    18. Mancarella, Pierluigi, 2014. "MES (multi-energy systems): An overview of concepts and evaluation models," Energy, Elsevier, vol. 65(C), pages 1-17.
    19. Calise, Francesco & de Notaristefani di Vastogirardi, Giulio & Dentice d'Accadia, Massimo & Vicidomini, Maria, 2018. "Simulation of polygeneration systems," Energy, Elsevier, vol. 163(C), pages 290-337.
    20. Kyriakarakos, George & Dounis, Anastasios I. & Arvanitis, Konstantinos G. & Papadakis, George, 2017. "Design of a Fuzzy Cognitive Maps variable-load energy management system for autonomous PV-reverse osmosis desalination systems: A simulation survey," Applied Energy, Elsevier, vol. 187(C), pages 575-584.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:8:p:1080-:d:105909. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.