IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i7p839-d102410.html
   My bibliography  Save this article

Technical Assessment of Different Operating Conditions of an On-Board Autothermal Reformer for Fuel Cell Vehicles

Author

Listed:
  • Laura Tribioli

    (Department of Engineering, Niccolò Cusano University, via Don Carlo Gnocchi 3, 00166 Rome, Italy)

  • Raffaello Cozzolino

    (Department of Engineering, Niccolò Cusano University, via Don Carlo Gnocchi 3, 00166 Rome, Italy)

  • Daniele Chiappini

    (Department of Engineering, Niccolò Cusano University, via Don Carlo Gnocchi 3, 00166 Rome, Italy)

Abstract

This paper evaluates the performance of a fuel cell/battery vehicle with an on-board autothermal reformer, fed by different liquid and gaseous hydrocarbon fuels. A sensitivity analysis is performed to investigate the system behavior under the variation of the steam to carbon and oxygen to carbon ratios. This is done in order to identify the most suitable operating conditions for a direct on-board production of hydrogen to be used in a high temperature polymer electrolyte membrane fuel cell. The same system should be able to process different fuels, to allow the end-user to freely decide which one to use to refuel the vehicle. Hence, the obtained operating conditions result in a trade-off between system flexibility as the feeding fuel changes, CO poisoning effect on the fuel cell and overall efficiency. The system is thus coupled to a high temperature fuel cell, modeled by means of a self-made tool, able to reproduce the polarization curve as the input syngas composition varies, and the overall system is afterwards tested on a plug-in fuel cell/battery vehicle simulator, in order to provide a thorough feasibility analysis, focusing on the entire system efficiency. Results show that a proper energy management strategy can mitigate the effect of the fuel variation on the reformer efficiency, allowing for good overall powertrain performance.

Suggested Citation

  • Laura Tribioli & Raffaello Cozzolino & Daniele Chiappini, 2017. "Technical Assessment of Different Operating Conditions of an On-Board Autothermal Reformer for Fuel Cell Vehicles," Energies, MDPI, vol. 10(7), pages 1-17, June.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:7:p:839-:d:102410
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/7/839/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/7/839/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jaggi, Vikas & Jayanti, S., 2013. "A conceptual model of a high-efficiency, stand-alone power unit based on a fuel cell stack with an integrated auto-thermal ethanol reformer," Applied Energy, Elsevier, vol. 110(C), pages 295-303.
    2. Das, Himadry Shekhar & Tan, Chee Wei & Yatim, A.H.M., 2017. "Fuel cell hybrid electric vehicles: A review on power conditioning units and topologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 268-291.
    3. Yang, Guangxing & Yu, Hao & Peng, Feng & Wang, Hongjuan & Yang, Jian & Xie, Donglai, 2011. "Thermodynamic analysis of hydrogen generation via oxidative steam reforming of glycerol," Renewable Energy, Elsevier, vol. 36(8), pages 2120-2127.
    4. Ercolino, Giuliana & Ashraf, Muhammad A. & Specchia, Vito & Specchia, Stefania, 2015. "Performance evaluation and comparison of fuel processors integrated with PEM fuel cell based on steam or autothermal reforming and on CO preferential oxidation or selective methanation," Applied Energy, Elsevier, vol. 143(C), pages 138-153.
    5. Xu, Xinhai & Li, Peiwen & Shen, Yuesong, 2013. "Small-scale reforming of diesel and jet fuels to make hydrogen and syngas for fuel cells: A review," Applied Energy, Elsevier, vol. 108(C), pages 202-217.
    6. Tribioli, Laura & Cozzolino, Raffaello & Chiappini, Daniele & Iora, Paolo, 2016. "Energy management of a plug-in fuel cell/battery hybrid vehicle with on-board fuel processing," Applied Energy, Elsevier, vol. 184(C), pages 140-154.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Edwin R. Grijalva & José María López Martínez & M. Nuria Flores & Víctor Del Pozo, 2018. "Design and Simulation of a Powertrain System for a Fuel Cell Extended Range Electric Golf Car," Energies, MDPI, vol. 11(7), pages 1-30, July.
    2. Xiangyang Yu & Xiaojing Wang, 2023. "Research on Carbon-Trading Model of Urban Public Transport Based on Blockchain Technology," Energies, MDPI, vol. 16(6), pages 1-21, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Purnima, P. & Jayanti, S., 2017. "Water neutrality and waste heat management in ethanol reformer - HTPEMFC integrated system for on-board hydrogen generation," Applied Energy, Elsevier, vol. 199(C), pages 169-179.
    2. Tribioli, Laura & Cozzolino, Raffaello & Chiappini, Daniele & Iora, Paolo, 2016. "Energy management of a plug-in fuel cell/battery hybrid vehicle with on-board fuel processing," Applied Energy, Elsevier, vol. 184(C), pages 140-154.
    3. Samsun, Remzi Can & Prawitz, Matthias & Tschauder, Andreas & Meißner, Jan & Pasel, Joachim & Peters, Ralf, 2020. "Reforming of diesel and jet fuel for fuel cells on a systems level: Steady-state and transient operation," Applied Energy, Elsevier, vol. 279(C).
    4. Samsun, Remzi Can & Prawitz, Matthias & Tschauder, Andreas & Pasel, Joachim & Pfeifer, Peter & Peters, Ralf & Stolten, Detlef, 2018. "An integrated diesel fuel processing system with thermal start-up for fuel cells," Applied Energy, Elsevier, vol. 226(C), pages 145-159.
    5. Pregelj, Boštjan & Micor, Michał & Dolanc, Gregor & Petrovčič, Janko & Jovan, Vladimir, 2016. "Impact of fuel cell and battery size to overall system performance – A diesel fuel-cell APU case study," Applied Energy, Elsevier, vol. 182(C), pages 365-375.
    6. Pasel, Joachim & Samsun, Remzi Can & Tschauder, Andreas & Peters, Ralf & Stolten, Detlef, 2017. "Advances in autothermal reformer design," Applied Energy, Elsevier, vol. 198(C), pages 88-98.
    7. Sulaiman, N. & Hannan, M.A. & Mohamed, A. & Ker, P.J. & Majlan, E.H. & Wan Daud, W.R., 2018. "Optimization of energy management system for fuel-cell hybrid electric vehicles: Issues and recommendations," Applied Energy, Elsevier, vol. 228(C), pages 2061-2079.
    8. Alessandro Serpi & Mario Porru, 2019. "Modelling and Design of Real-Time Energy Management Systems for Fuel Cell/Battery Electric Vehicles," Energies, MDPI, vol. 12(22), pages 1-21, November.
    9. Wu, Wei & Chuang, Bo-Neng & Hwang, Jenn-Jiang & Lin, Chien-Kung & Yang, Shu-Bo, 2019. "Techno-economic evaluation of a hybrid fuel cell vehicle with on-board MeOH-to-H2 processor," Applied Energy, Elsevier, vol. 238(C), pages 401-412.
    10. Kwan, Trevor Hocksun & Katsushi, Fujii & Shen, Yongting & Yin, Shunan & Zhang, Yongchao & Kase, Kiwamu & Yao, Qinghe, 2020. "Comprehensive review of integrating fuel cells to other energy systems for enhanced performance and enabling polygeneration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    11. Edwin R. Grijalva & José María López Martínez & M. Nuria Flores & Víctor Del Pozo, 2018. "Design and Simulation of a Powertrain System for a Fuel Cell Extended Range Electric Golf Car," Energies, MDPI, vol. 11(7), pages 1-30, July.
    12. Samsun, Remzi Can & Pasel, Joachim & Janßen, Holger & Lehnert, Werner & Peters, Ralf & Stolten, Detlef, 2014. "Design and test of a 5kWe high-temperature polymer electrolyte fuel cell system operated with diesel and kerosene," Applied Energy, Elsevier, vol. 114(C), pages 238-249.
    13. Zhijie Duan & Luo Zhang & Lili Feng & Shuguang Yu & Zengyou Jiang & Xiaoming Xu & Jichao Hong, 2021. "Research on Economic and Operating Characteristics of Hydrogen Fuel Cell Cars Based on Real Vehicle Tests," Energies, MDPI, vol. 14(23), pages 1-19, November.
    14. Walluk, Mark R. & Lin, Jiefeng & Waller, Michael G. & Smith, Daniel F. & Trabold, Thomas A., 2014. "Diesel auto-thermal reforming for solid oxide fuel cell systems: Anode off-gas recycle simulation," Applied Energy, Elsevier, vol. 130(C), pages 94-102.
    15. Wei Zhang & Jixin Wang & Shaofeng Du & Hongfeng Ma & Wenjun Zhao & Haojie Li, 2019. "Energy Management Strategies for Hybrid Construction Machinery: Evolution, Classification, Comparison and Future Trends," Energies, MDPI, vol. 12(10), pages 1-26, May.
    16. Kurnia, Jundika C. & Sasmito, Agus P. & Shamim, Tariq, 2017. "Performance evaluation of a PEM fuel cell stack with variable inlet flows under simulated driving cycle conditions," Applied Energy, Elsevier, vol. 206(C), pages 751-764.
    17. Yao He & Changchang Miao & Ji Wu & Xinxin Zheng & Xintian Liu & Xingtao Liu & Feng Han, 2021. "Research on the Power Distribution Method for Hybrid Power System in the Fuel Cell Vehicle," Energies, MDPI, vol. 14(3), pages 1-15, January.
    18. Thomas, Sobi & Vang, Jakob Rabjerg & Araya, Samuel Simon & Kær, Søren Knudsen, 2017. "Experimental study to distinguish the effects of methanol slip and water vapour on a high temperature PEM fuel cell at different operating conditions," Applied Energy, Elsevier, vol. 192(C), pages 422-436.
    19. Víctor Sanz i López & Ramon Costa-Castelló & Carles Batlle, 2022. "Literature Review of Energy Management in Combined Heat and Power Systems Based on High-Temperature Proton Exchange Membrane Fuel Cells for Residential Comfort Applications," Energies, MDPI, vol. 15(17), pages 1-22, September.
    20. Wang, Yujie & Sun, Zhendong & Chen, Zonghai, 2019. "Energy management strategy for battery/supercapacitor/fuel cell hybrid source vehicles based on finite state machine," Applied Energy, Elsevier, vol. 254(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:7:p:839-:d:102410. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.