IDEAS home Printed from https://ideas.repec.org/a/gam/jdataj/v7y2022i6p71-d824475.html
   My bibliography  Save this article

A Socioeconomic Dataset of the Risk Associated with the 1% and 0.2% Return Period Stillwater Flood Elevation under Sea-Level Rise for the Northern Gulf of Mexico

Author

Listed:
  • Diana Carolina Del Angel

    (Harte Research Institute for Gulf of Mexico Studies, Texas A&M University—Corpus Christi, Corpus Christi, TX 78412, USA)

  • David Yoskowitz

    (Harte Research Institute for Gulf of Mexico Studies, Texas A&M University—Corpus Christi, Corpus Christi, TX 78412, USA)

  • Matthew Vernon Bilskie

    (School of Environmental, Civil, Agricultural, and Mechanical Engineering, University of Georgia, Athens, GA 30602, USA)

  • Scott C. Hagen

    (Department of Civil and Environmental Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
    Center for Computation and Technology (CCT), Louisiana State University, Baton Rouge, LA 70808, USA)

Abstract

Storm surge flooding can cause significant damage to coastal communities. In addition, coastal communities face an increased risk of coastal hazards due to sea-level rise (SLR). This research developed a dataset to communicate the socioeconomic consequences of flooding within the 1% and 0.2% Annual Exceedance Probability Floodplain (AEP) under four SLR scenarios for the Northern Gulf of Mexico region. Assessment methods primarily used HAZUS-MH software, a GIS-based modeling tool developed by the Federal Emergency Management Agency in the United States, to estimate natural disasters’ physical, economic, and social impacts. This dataset consists of 29 shapefiles containing seven different measures of storm surge inundation impacts under SLR (including building damage, displaced people and shelter needs, road exposure, essential facilities, wastewater treatment plants, bridges, and vehicle damage). The data is publicly available under the Gulf of Mexico Research Initiative Information and Data Cooperative (GRIIDC).

Suggested Citation

  • Diana Carolina Del Angel & David Yoskowitz & Matthew Vernon Bilskie & Scott C. Hagen, 2022. "A Socioeconomic Dataset of the Risk Associated with the 1% and 0.2% Return Period Stillwater Flood Elevation under Sea-Level Rise for the Northern Gulf of Mexico," Data, MDPI, vol. 7(6), pages 1-15, May.
  • Handle: RePEc:gam:jdataj:v:7:y:2022:i:6:p:71-:d:824475
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2306-5729/7/6/71/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2306-5729/7/6/71/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kousky, Carolyn & Walls, Margaret & Chu, Ziyan, 2013. "Flooding and Resilience: Valuing Conservation Investments in a World with Climate Change," RFF Working Paper Series dp-13-38, Resources for the Future.
    2. Thomas Wahl & Shaleen Jain & Jens Bender & Steven D. Meyers & Mark E. Luther, 2015. "Increasing risk of compound flooding from storm surge and rainfall for major US cities," Nature Climate Change, Nature, vol. 5(12), pages 1093-1097, December.
    3. Xinyu Fu & Mohammed Gomaa & Yujun Deng & Zhong-Ren Peng, 2017. "Adaptation planning for sea level rise: a study of US coastal cities," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 60(2), pages 249-265, February.
    4. Jonathan W. F. Remo & Nicholas Pinter & Moe Mahgoub, 2016. "Assessing Illinois’s flood vulnerability using Hazus-MH," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 265-287, March.
    5. Christine Shepard & Vera Agostini & Ben Gilmer & Tashya Allen & Jeff Stone & William Brooks & Michael Beck, 2012. "Assessing future risk: quantifying the effects of sea level rise on storm surge risk for the southern shores of Long Island, New York," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 60(2), pages 727-745, January.
    6. Jonathan Remo & Nicholas Pinter & Moe Mahgoub, 2016. "Assessing Illinois’s flood vulnerability using Hazus-MH," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 265-287, March.
    7. Madeline Allen & Leslie Gillespie-Marthaler & Mark Abkowitz & Janey Camp, 2020. "Evaluating flood resilience in rural communities: a case-based assessment of Dyer County, Tennessee," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 101(1), pages 173-194, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. N. Zhang & H. Huang, 2018. "Assessment of world disaster severity processed by Gaussian blur based on large historical data: casualties as an evaluating indicator," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(1), pages 173-187, May.
    2. C. Emdad Haque & Khandakar Hasan Mahmud & David Walker, 2022. "Understanding Flood Risk and Vulnerability of a Place: Estimating Prospective Loss and Damage Using the HAZUS Model," Geographies, MDPI, vol. 2(3), pages 1-23, July.
    3. Corinne J. Schuster-Wallace & Steven J. Murray & Edward A. McBean, 2018. "Integrating Social Dimensions into Flood Cost Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(9), pages 3175-3187, July.
    4. Tugkan Tanir & Andre de Souza de Lima & Gustavo A. Coelho & Sukru Uzun & Felicio Cassalho & Celso M. Ferreira, 2021. "Assessing the spatiotemporal socioeconomic flood vulnerability of agricultural communities in the Potomac River Watershed," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 225-251, August.
    5. Xinyu Fu & Jie Song, 2017. "Assessing the Economic Costs of Sea Level Rise and Benefits of Coastal Protection: A Spatiotemporal Approach," Sustainability, MDPI, vol. 9(8), pages 1-14, August.
    6. Bing-Chen Jhong & Jung Huang & Ching-Pin Tung, 2019. "Spatial Assessment of Climate Risk for Investigating Climate Adaptation Strategies by Evaluating Spatial-Temporal Variability of Extreme Precipitation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(10), pages 3377-3400, August.
    7. J. J. Wijetunge & N. G. P. B. Neluwala, 2023. "Compound flood hazard assessment and analysis due to tropical cyclone-induced storm surges, waves and precipitation: a case study for coastal lowlands of Kelani river basin in Sri Lanka," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 3979-4007, April.
    8. Le Bars, Dewi, 2018. "Uncertainty in sea level rise projections due to the dependence between contributors," Earth Arxiv uvw3s, Center for Open Science.
    9. Ulysse Pasquier & Yi He & Simon Hooton & Marisa Goulden & Kevin M. Hiscock, 2019. "An integrated 1D–2D hydraulic modelling approach to assess the sensitivity of a coastal region to compound flooding hazard under climate change," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 98(3), pages 915-937, September.
    10. William G. Bennett & Harshinie Karunarathna & Yunqing Xuan & Muhammad S. B. Kusuma & Mohammad Farid & Arno A. Kuntoro & Harkunti P. Rahayu & Benedictus Kombaitan & Deni Septiadi & Tri N. A. Kesuma & R, 2023. "Modelling compound flooding: a case study from Jakarta, Indonesia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(1), pages 277-305, August.
    11. Qiao Hu & Zhenghong Tang & Lei Zhang & Yuanyuan Xu & Xiaolin Wu & Ligang Zhang, 2018. "Evaluating climate change adaptation efforts on the US 50 states’ hazard mitigation plans," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(2), pages 783-804, June.
    12. Sharma, Shailesh & Waldman, John & Afshari, Shahab & Fekete, Balazs, 2019. "Status, trends and significance of American hydropower in the changing energy landscape," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 112-122.
    13. Leslie Gillespie‐Marthaler & Katherine Nelson & Hiba Baroud & Mark Abkowitz, 2019. "Selecting Indicators for Assessing Community Sustainable Resilience," Risk Analysis, John Wiley & Sons, vol. 39(11), pages 2479-2498, November.
    14. Hongshi Xu & Kui Xu & Tianye Wang & Wanjie Xue, 2022. "Investigating Flood Risks of Rainfall and Storm Tides Affected by the Parameter Estimation Coupling Bivariate Statistics and Hydrodynamic Models in the Coastal City," IJERPH, MDPI, vol. 19(19), pages 1-18, October.
    15. Kayleigh Swanson, 2021. "Equity in Urban Climate Change Adaptation Planning: A Review of Research," Urban Planning, Cogitatio Press, vol. 6(4), pages 287-297.
    16. Zipan Cai & Jessica Page & Vladimir Cvetkovic, 2021. "Urban Ecosystem Vulnerability Assessment of Support Climate-Resilient City Development," Urban Planning, Cogitatio Press, vol. 6(3), pages 227-239.
    17. Pooja P. Preetha & Niloufar Shirani-bidabadi & Ashraf Z. Al-Hamdan & Michael Anderson, 2021. "A Methodical Assessment of Floodplains in Mixed Land Covers Encompassing Bridges in Alabama State: Implications of Spatial Land Cover Characteristics on Flood Vulnerability," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(5), pages 1603-1618, March.
    18. Kirsten Halsnæs & Morten Andreas Dahl Larsen & Per Skougaard Kaspersen, 2018. "Climate change risks for severe storms in developing countries in the context of poverty and inequality in Cambodia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(1), pages 261-278, October.
    19. Pramod K. Singh & Konstantinos Papageorgiou & Harpalsinh Chudasama & Elpiniki I. Papageorgiou, 2019. "Evaluating the Effectiveness of Climate Change Adaptations in the World’s Largest Mangrove Ecosystem," Sustainability, MDPI, vol. 11(23), pages 1-17, November.
    20. Yui Omori, 2021. "Preference Heterogeneity of Coastal Gray, Green, and Hybrid Infrastructure against Sea-Level Rise: A Choice Experiment Application in Japan," Sustainability, MDPI, vol. 13(16), pages 1-16, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jdataj:v:7:y:2022:i:6:p:71-:d:824475. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.