IDEAS home Printed from https://ideas.repec.org/a/gam/jdataj/v3y2018i4p50-d181172.html
   My bibliography  Save this article

Application of Rough Set Theory to Water Quality Analysis: A Case Study

Author

Listed:
  • Maryam Zavareh

    (Department of Civil, Environmental and Infrastructure Engineering, George Mason University, Fairfax, VA 22030, USA)

  • Viviana Maggioni

    (Department of Civil, Environmental and Infrastructure Engineering, George Mason University, Fairfax, VA 22030, USA)

Abstract

This work proposes an approach to analyze water quality data that is based on rough set theory. Six major water quality indicators (temperature, pH, dissolved oxygen, turbidity, specific conductivity, and nitrate concentration) were collected at the outlet of the watershed that contains the George Mason University campus in Fairfax, VA during three years (October 2015–December 2017). Rough set theory is applied to monthly averages of the collected data to estimate one indicator (decision attribute) based on the remainder indicators and to determine what indicators (conditional attributes) are essential (core) to predict the missing indicator. The redundant attributes are identified, the importance degree of each attribute is quantified, and the certainty and coverage of any detected rule(s) is evaluated. Possible decision making rules are also assessed and the certainty coverage factor is calculated. Results show that the core water quality indicators for the Mason watershed during the study period are turbidity and specific conductivity. Particularly, if pH is chosen as a decision attribute, the importance degree of turbidity is higher than the one of conductivity. If the decision attribute is turbidity, the only indispensable attribute is specific conductivity and if specific conductivity is the decision attribute, the indispensable attribute beside turbidity is temperature.

Suggested Citation

  • Maryam Zavareh & Viviana Maggioni, 2018. "Application of Rough Set Theory to Water Quality Analysis: A Case Study," Data, MDPI, vol. 3(4), pages 1-15, November.
  • Handle: RePEc:gam:jdataj:v:3:y:2018:i:4:p:50-:d:181172
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2306-5729/3/4/50/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2306-5729/3/4/50/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Maria Diamantopoulou & Vassilis Antonopoulos & Dimitris Papamichail, 2007. "Cascade Correlation Artificial Neural Networks for Estimating Missing Monthly Values of Water Quality Parameters in Rivers," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(3), pages 649-662, March.
    2. Ping-Feng Pai & Fong-Chuan Lee, 2010. "A Rough Set Based Model in Water Quality Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(11), pages 2405-2418, September.
    3. X. Qin & G. Huang, 2009. "An Inexact Chance-constrained Quadratic Programming Model for Stream Water Quality Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(4), pages 661-695, March.
    4. Ping-Feng Pai & Lan-Lin Li & Wei-Zhan Hung & Kuo-Ping Lin, 2014. "Using ADABOOST and Rough Set Theory for Predicting Debris Flow Disaster," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(4), pages 1143-1155, March.
    5. Si-Hui Dong & Hui-Cheng Zhou & Hai-Jun Xu, 2004. "A Forecast Model of Hydrologic Single Element Medium and Long-Period Based on Rough Set Theory," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 18(5), pages 483-495, October.
    6. Ajit Singh & S. Ghosh & Pankaj Sharma, 2007. "Water quality management of a stretch of river Yamuna: An interactive fuzzy multi-objective approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(2), pages 515-532, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ping-Feng Pai & Fong-Chuan Lee, 2010. "A Rough Set Based Model in Water Quality Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(11), pages 2405-2418, September.
    2. Huapeng Qin & Jingjing Jiang & Guangtao Fu & Ying Zheng, 2013. "Optimal Water Quality Management Considering Spatial and Temporal Variations in a Tidal River," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(3), pages 843-858, February.
    3. Bojan Srdjevic & Yvonilde Medeiros, 2008. "Fuzzy AHP Assessment of Water Management Plans," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(7), pages 877-894, July.
    4. Sudha Sippi & Dipteek Parmar, 2024. "Water quality simulation under river restoration measures for the Delhi stretch of river Yamuna, India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(3), pages 5891-5914, March.
    5. Zong Woo Geem & Jin-Hong Kim, 2016. "Sustainable Optimization for Wastewater Treatment System Using PSF-HS," Sustainability, MDPI, vol. 8(4), pages 1-13, March.
    6. G. Saharidis & I. Androulakis & M. Ierapetritou, 2011. "Model building using bi-level optimization," Journal of Global Optimization, Springer, vol. 49(1), pages 49-67, January.
    7. Xu, Y. & Huang, G.H. & Qin, X.S. & Cao, M.F., 2009. "SRCCP: A stochastic robust chance-constrained programming model for municipal solid waste management under uncertainty," Resources, Conservation & Recycling, Elsevier, vol. 53(6), pages 352-363.
    8. Li, Y.P. & Huang, G.H. & Zhang, N. & Nie, S.L., 2011. "An inexact-stochastic with recourse model for developing regional economic-ecological sustainability under uncertainty," Ecological Modelling, Elsevier, vol. 222(2), pages 370-379.
    9. Qi Liu & Gengzhong Feng & Giri Kumar Tayi & Jun Tian, 2021. "Managing Data Quality of the Data Warehouse: A Chance-Constrained Programming Approach," Information Systems Frontiers, Springer, vol. 23(2), pages 375-389, April.
    10. Li, Y.P. & Huang, G.H. & Nie, S.L. & Chen, X., 2011. "A robust modeling approach for regional water management under multiple uncertainties," Agricultural Water Management, Elsevier, vol. 98(10), pages 1577-1588, August.
    11. Gao, Yang & Zhang, Xiao & Wu, Lei & Yin, Shijiu & Lu, Jiao, 2017. "Resource basis, ecosystem and growth of grain family farm in China: Based on rough set theory and hierarchical linear model," Agricultural Systems, Elsevier, vol. 154(C), pages 157-167.
    12. Ling Tan & Ji Guo & Selvarajah Mohanarajah & Kun Zhou, 2021. "Can we detect trends in natural disaster management with artificial intelligence? A review of modeling practices," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(3), pages 2389-2417, July.
    13. Wei Yang & Zhifeng Yang, 2010. "An Interactive Fuzzy Satisfying Approach for Sustainable Water Management in the Yellow River Delta, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(7), pages 1273-1284, May.
    14. Qiang Zhang & Ben-De Wang & Bin He & Yong Peng & Ming-Lei Ren, 2011. "Singular Spectrum Analysis and ARIMA Hybrid Model for Annual Runoff Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(11), pages 2683-2703, September.
    15. Mohamad Fulazzaky, 2009. "Water Quality Evaluation System to Assess the Brantas River Water," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(14), pages 3019-3033, November.
    16. Maya Rajnarayan Ray & Arup Kumar Sarma, 2016. "Influence of Time Discretization and Input Parameter on the ANN Based Synthetic Streamflow Generation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(13), pages 4695-4711, October.
    17. Yong-Ying Zhu & Hui-Cheng Zhou, 2009. "Rough Fuzzy Inference Model and its Application in Multi-factor Medium and Long-term Hydrological Forecast," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(3), pages 493-507, February.
    18. D. Fu & Y. Li & G. Huang, 2013. "A Factorial-based Dynamic Analysis Method for Reservoir Operation Under Fuzzy-stochastic Uncertainties," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(13), pages 4591-4610, October.
    19. H. Lu & G. Huang & L. He, 2012. "Simulation-Based Inexact Rough-Interval Programming for Agricultural Irrigation Management: A Case Study in the Yongxin County, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(14), pages 4163-4182, November.
    20. Ajit Pratap Singh & Subodh Kant Dubey, 2012. "Optimal selection of a landfill disposal site using a modified fuzzy utility approach," Fuzzy Information and Engineering, Springer, vol. 4(3), pages 313-338, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jdataj:v:3:y:2018:i:4:p:50-:d:181172. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.